
~. ~ CONTR.OL DATA
~ ~ COI\.PORt\TION

NOS VlElRS~O~ 1
IRlfEf[E~[E~C[E ~~AlNJfUJAlL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:

60435400

CYBER 170 MODELS 172, 173, 174, 175
CYBER 70. MODELS 71, 72, 73,74
6000 SERIES

ALPHABETICAL LIST OF CONTROL ST A TEMENTS t
' ' -

".-Q'> 8 ,'h4 m.., (, i.·f

ACCOUNT 1-6-2 GOTO 1-4-4 RBR 1-9-4
ALGOL 1-11-3 GPSS 84003900 REDUCE 60429800
APEX 76070000 GTR 1-7-17 RENAME 1-7-26
APPEND 1-8-5 IF 1-4-7 REPLACE 1-8-15
ASCII 1-4-12 ISF 60435700 REQUEST 1-7-27,10-17
ASSIGNt t tt 1-7-2,10-11 ITEMIZE 60495600 RERUN 1-6-14
ATTACH 1-8-6 JOB 1-5-4 RESEQ 1-7-29
BASIC 1-11-6 KRONREF 1-14-10 RESOURC 1-6-15
BKSP 1-7-3 LABEL 1-10-13 RESTART 1-12-2
BLANK 1-10-12 LBC 1-9-2 RETURN 1-7-29
CALL 1-4-5 LDI 1-6-7 REWIND 1-7-30
CATALOG 1-7-4 LDSET 60429800 RFL 1-6-17
CATLIST 1-8-8 LENGTH 1-6-8 ROLLOUT 1-6-18
CHANGE 1-8-10 LIBEDIT 1-7-18 ROUTE 1-7-31
CHARGE 1-6-2 LIBGEN 1-7-19 RTIME 1-6-18

60435700 LIBLOAD 60429800 SATISFY 60429800
CKP 1-12-1 LIBRARY 60429800 SAVE 1-8-16
CLEAR 1-7-7 LIMITS 1-6-8 SCRSIMt t t 60435700
COBO_L 1-11-8 6043b700 SET 1-4-6
COBOL5 1-11-11 LISTLB 1-10-16 SETASL 1-6-18
COMMENT 1-6-3 LIST80 1-7 - 20 ,SETCORE 1-6-19
COMMON 1-7-7 LOAD 60429800 SETID 1-7-34
COMPASS 6044fi300 LOC 1-9-3 SETJSL 1-6-19
CONVERT 1-7-7 LOCK 1-7-21 SETPR 1-6-20
COpy 1-7-8 L072 1-7-21 SETTL 1-6-20
COPYBF 1-7-9 MAP 60429800 SKIPEI 1-7-35
COPYBR 1-7-10 MFL 1-6-11 SKIPF 1-7-35
COPYCF 1-7-10 MODE 1-6-11 SKIPFB 1-7-35
COPYCR 1-7-11 MODIFY 1-14-2 SKIPR 1-7-36
COPYEI 1-7-12 MODVALtttt 60435700 SLOAD 60429800
COPYL 60495600 NEW 1-7-24 SORT 1-7-36
COPYSBF 1-7-12 NOEXIT 1-6-13 SORTMRG 1-11-23
COPYX 1-7-13 NOGO 60429800 STAGE 1-7-38
CSET 1-4-12 NORERUN 1-6-13 STIME 1-6-20
CTIME 1-6-3 OFFSW 1-6-13 SUBMIT 1-6-21
DAYFILE 1-6-3 OLD 1-8-12 SUIt t 1-6-25
DEFINE 1-8-11 ONEXIT 1-6-13 SUMMARY 1-6-25
DISPLAY 1-4-6 ONSW 1-6-14 SWITCH 1-6-26
DISPOSE 1-7-14 OPLEDIT 1-14-4 SYSEDITt t t 60435700
DMD 1-9-2 60450100 TDUMP 1-7-39
DMP 1-9-1 OUT 1-7 -24 UNLOAD 1-7-40
DOCMENT 1-7-15 PACK 1-7 -25 UNLOCK 1-7-40
DSDI 60435700 PACKNAM 1-8-13 UPDATE 1-14-6
EDIT 1-14-1 PARITY 1-4-12 UPMOD 1-14-9

60436100 PASSWOR 1-6-14 USECPU 1-6-26
ENQUIRE 1-6-4 60435700 USER 1-6-27
EVICT 1-7-16 PBC 1-9-4 VALNET 60435700
EXECUTE 60429800 PERMIT 1-8-14 VERIFY 1-7-41
EXIT 1-6-7 VFYLIB 1-7-42
FAMILYtt, 60435700 PRIMARY 1-7 -26 VSN 1-10-18
FORMATttttt 60435700 PROFILEt t tt 60435700 WBR 1-9-5
FTN 1-11-1'7 PURGALL 1-8-14 WRITEF 1-7-42
GET 1-8-12 PURGE 1-8-15 WRITER 1-7-42

t Reference to a page number indicates the statement is des cribed in this manual;
a manual publication number means the statement is described in that manual.

tt For system origin jobs only.
t t tFor system origin jobs or users with system origin privileges and DEBUG mode on

on at the console.
t t t tSome features of this statement require system origin privileges.

t t t t tFor system origin jobs or users with system origin privileges and ENGINEERING
mode on at the console.

&:J -=:\ CONTR.OL DATA
\::I r::J COR(lOR{\TION

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:

60435400

CYBER 170 MODELS 172, 173, 174, 175
CYBER 70 MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(6-17-75)

B Revised to reflect NOS 1.1 as well as technical and literary corrections. New features include

(3-8-76) support of memory increments to 262K on CDC CYBER 170 Series Systems, 844-41 Disk Storage

Subsystem, multimainframe, additional security control, the Text Editor utility, and BASIC

version 3. Other additions include: description of reserved file names in section 2, new error

messages, and new. parameters on the BLANK, CONVERT, DAYFILE, ENQUIRE, FTN, LDI,

L072, and SUMMARY statements. Section 4 has been reorganized to more accurately describe

the system control language. In addition, the description of OPLEDIT usage has been removed

from section 14 and is included in the Modify Reference Manual. The entire description of the

FAMILY and SYSEDIT statements has been removed from section 14 and is included in the NOS

Installation Handbook. This edition obsoletes all previous editions.

C Revised to reflect NOS 1.2 at PSR level 439. New features include revised field len!!th control~

(12-3-76) added security for the CHANGE and PASSWOR control statements, queued file management,

security count, SRU limit control, and additional parameters for the LIMITS statement. The

parameters for the COBOL5 statement have been added to the product set descriptions. Four new

control statements are described: MFL, ROUTE, SETASL, and SETJSL. New examples are

included for creating multifiles on tape and using LIBEDIT. Technical and literary corrections

have been nnde.

Publication No.
60435400

REVISION LETTERS I. O. Q AND X ARE NOT USED

© 1975. 1976
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to Information In this manual, are Indicated by bars In the margins or by a dot
near the page number If the entire page Is affected. A bar by the page number Indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover -
Control

Statements C
Title Page -
ii C
iii C
iv C
v C
vi C
vii C
viii Blank
ix C
x C
xi C
xii C
xiii C
xiv C
1-1-1 C
1-1-2 C
1-1-3 C
1-1-4 C
1-2-1 C
1-2-2 C
1-2-3 C
1-2-4 C
1-2-5 C
1-2-6 C
1-2-7 C
1-2-8 C
1-2-9 C
1-2-10 B
1-2-11 B
1-2-12 B
1-2-13 B
1-2-14 C
1-3-1 C
1-3-2 C
1-3-3 .C
1-3-4 C
1-3-5 C
1-3-6 C
1-3-7 C
1-3-8 C
1-3-9 C
1-3-10 C
1-3-11 C
1-3-12 C
1-3-13 C
1-3-14 C
1-3-15 C
1-3-16 C
1-4-1 B
1-4-2 'B
1-4-3 C
1-4-4 B
1-4-5 C
1-4-6 A
1-4-7 B
1-4-8 B

1-7-20 C
1-7-21 C
1-7-22 C
1-7-23 C
1-7-24 C
1-7-25 . ·C
1-7-26 C
1-7-27 C
1-7-28 C
1-7-29 .C
1-7-30 C
1-7-31 C
1-7-32 C
1-7-33 C
1-7-34 C
1-7-35 C
1-7-36 C
1-7-37 C
1-7-38 C
1-7-39 C
1-7-40 C
1-7-41 C
1-7-42 C
1-8-1 C
1-8-2 C
1-8-3 A
1-8-4 C
1-8-5 A
1-8-6 C
1-8-7 C
1-8-8 C
1-8-9 C
1-8-10 C
1-8-11 C
1-8-12 C
1-8-13 C
1-8-14 C
1-8-15 C
1-8-16 C
1-9-1 C
1-9-2 C
1-9-3 A
1-9-4 A
1-9-5 C
1-10-1 A
1-10-2 C
1-10-3 C
1-10-4 C
1-10-5 C
1-10-6 C
1-10-7 C
1-10-8 C
1-10-9 C
1-10-10 A
1-10-11 C
1-10-12 B
1-10-13 C
1-10-14 C
1-10-15 C

1-4-9 C
1-4-10 C
1-4-11 C
1-4-12 A
1-5-1 B
1-5-2 C
1-5-3 C
1-5-4 C
1-5-5 C
1-5-6 C
1-5-7 A
1-5-8 C
1-6-1 C
1-6-2 C
1-6-3 C
1-6-4 C
1-6-5 C
1-6-6 C
1-6-7 C
1-6-8 C
1-6-9 C
1-6-10 C
1-6-11 C
1-6-12 C
1-6-13 C
1-6-14 C
1-6-15 C
1-6-16 C
1-6:-1.7 C
1-6-18 C
1-6-19 C
1-6-20 C
1-6-21 C
1-6-22 C
1-6-23 C
1-6-24' . C
1-6-25 .C
1-6-26 C
1-6-27 C
1-6-28 C
1-7-1 C
1-7-2 C
1-7-3 A
1-7-4 C
1-7-5 C
1-7-6 A
1-7-7 B
1-7-8 B
1-7-9 C
1-7-10 C
1-7-11 C
1-7-12 C
1-7-13 C
1-7-14 C
1-7-15 C
1-7-16 C
1-7-17 C
1-7-18 C
1-7-19 C

1-10-16 I C
1-10-17 C
1-10-18 C
1-10-19 C
1-10-20 C
1-10-21' C
1-10-22 C
1-10-23 C
1-10-24 C
1-10-25 C
1-10-26 C
1-10-27 C
1-10-28. C
1-10-29 C
1-11-1 C
1-11-2 C
1-11-3 C
1-11-4 C
1-11-5 C
1-11-6 C
1-11-7 C
1-11-8 C
1-11-9 C
1-11-10 C
1-11-11 C
1-11-12 C
1-11-13 C
1-11-14 C
1-11-15 C
1-11-16 C
1-11-17 C
1-11-18 C
1-11-19 C
1-11-20 C
1-11-21 C
1-11-22 C
1-11-23 C
1-11-24 C
1-12-1 C
1-12-2 A
1-12-3 A
1-13-1 A
1-13-2 A
1-13-3 A
1-13-4 A
1-13-5 A
1-13-6 A
1-13-7 A
1-13-8 A
1-13-9 A
1-13-10 A
1-13-11 A
1-13-12 A
1-13-13 A
1-14-1 B
1-14-2 B
1-14-3 B
1-14-4 B
1-14-5 B

1-14-6 B
1-14-7 B
1-14-8 B
1-14-9 B
1-14-10 B
l-A-1 C
l-A-2 C
l-A-3 C
l-A-4 B
1-A-5 A
1-A-6 A
l-A-7 A
l-A-8 A
1-B-1 A
I-B-2 C
I-B-3 C
I-B-4 C
I-B-5 C
1-B-6 C
I-B-7 C
I-B-8 C
I-B-9 C
I-B-10 C
I-B-l1 C
1-B-12 C
I-B-13 C
I-B-14 C
1-B-15 C
1-B-16 C
1-B-17 C
I-B-18 C
I-B-19 C
1-B-20 C
1-B-21 C
l-B-22 C
1-B-23 C
1-B-24 C
I-B-25 C
1-B-26 C
1-B-27 C
1-B-28 C
I-B-29 C
1-B-30 C
I-B-31 C
I-B-32 C
I-B-33 C
I-B-34 C
1-B-35 C
1-B-36 C
I-B-37 C
l-C-l C
1-C-2 B
1-C-3 A
1-C-4 A
1-C-5 C
1-C-6 C
1-C-7 A
1-C-8 A
1-C-9 A

60435400 C iii

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

l-C-I0 A
l-C-ll C
l-C-12 C
l-C-13 C
l-C-14 C
l-C-15 C
l-C-16 C
l-C-17 C
l-C-18 C
1-0-1 A
1-0-2 B
1-0-3 B
1-0-4 C
1-E-1 C
I-F-l C
I-F-2 A
I-F-3 A
I-F.;..4 A
I-F-5 C
I-F-6 A
I-G-1 A
I-G-2 A
1-G-3 A
I-G-4 A
1-G-5 A
1-G-6 A
1-G-7 C
1-G-8 A
1-G-9 A
I-G-I0 A
I-G -11 ·A
I-G-12 A
I-G-13 A
I-G-14 A
1-G-15 A
I-G-16 A
I-G-17 A
I-G-18 A
I-G-19 A
1-G-20 C
I-H-l C
I-H-2 C
I-H-3 C
1-H-4 C
I-H-5 C
Index-l C
Index-2 C
Index-3 C
Index-4 C
Index-5 C
Index-6 C
Index-7 C
Index-8 C
Index-9 C
Index-l0 C
Index-II C
CmtSheet C
Heturn Env -
Back Cover -

iv 60435400 C

PREFACE

The Network Operating System (NOS) was developed by Control Data Corporation to provide
network capabilities for time-sharing and transaction processing. in addition to local and
remote batch processing. on CONTROL DATA® CYBER 170 Series. Models 172, 173. 174. I
and 175 Computer Systems, CONTROL DATA® CYBER 70 Series, Models 71. 72. 73. and 74
Computer Systems. and CONTROL DATA® 6000 Series Computer Systems.

This manual describes the external features of NOS 1.2 for the batch user. Information in I
this manual should be useful to those who use the programs and utilities supplied with the
system and those who wish to write their own. The manual is contained in two volumes to
separate information pertaining primarily to the applications programlner fronl that per- I
taining to the applications COMPASS progranlmer.

Volume 1 (publication no. 60435400) contains information for the applications programmer.
This includes general information about files. job flow and execution. control statement
processing. and an extensive discussion on control statements.

Volume 2 (publication no. 60445300) contains information for those who write system or
assembly language programs for use with NOS. It is primarily intended for the applica- I
tions COMPASS programmer; however. several portions contain information for users
of higher level languages. For reference. the table of contents of volun1e 2 follows the
table of contents of this volume.

Throughout this manual, cross-references to the NOS Reference Manual, volume 2 are in
the form. "refer to section (or appendix) n. volume 2". If volume 2 is not stipulated. the
reference is to this manual.

This manual does not contain a description of NOS system operation, detailed descriptions
of the software product set available under NOS. or descriptions of the time-sharing
commands.

The user is assumed to be familiar with CDC computer systems and with operating systems
in general. For further information concerning CDC CYBER 170, CDC CYBER 70. and
6000 Series Computer Systems, the NOS time-sharing system, and the products supported
by NOS. consult the following manuals.

Control Data Publication

CYBER 170 Computer Systems Reference Manual

CYBER 70/Model 71 Computer System Reference Manual

CYBER 70/Model 72 Computer System Reference Manual

CYBER 70/Model 73 Computer System Reference lVlanual

CYBER 70/Model 74 Computer System Reference :Manual

6400/6500/6600 Computer Systems Reference Manual

60435400 C

Publication No.

60420000

60453300

60347000

60347200

60347400

60100000

v

I

Control Data Publication Publication No.

NOS General Information Manual 60435900

NOS Installation Handbook 60435700

NOS Operator's Guide 60435600

NOS. Application Programmer's Instant 60436000

NOS System Programmer's Instant 60449200

NOS Time-Sharing User's Reference Manual 60435500

NOS Time-Sharing User's Guide 60436400

NOS Terminal User's Instant Manual 60435800

NOS Text Editor Reference Manual 60436100

NOS Export/Import Reference Manual 60436200

TRANEX 1 Reference Manual 60407900

I
TRANEX 1/TAF 1 User's Guide 60436500

TAF 1 Reference Manual 60453000

TAF 1 Data Manager Reference Manual 60453100

NOS Modify Reference Manual 60450100

NOS Modify Instant 60450200

Update Reference Manual 60449900

I
NAM Reference Manual 60499500

Network Definition Languages Reference Manual 60480000

Network Administrator and Operator Facility
Reference Manual 60480100

BASIC 3 Reference Manual 19983900

APL ~:<CYBER Reference Manual 19980400

I APL 2.0 Reference Manual 60454000

FORTRAN Extended 4 Reference Manual 60497800

COBOL 4 Reference Manual 60496800

I COBOL 5 Reference Manual 60497100

ALGOL 4 Reference Manual 60496600

Sort/Merge 4 Reference Manual 60497500

CYBER Record Manager 1 Reference Manual 60495700

CYBER Loader 1 Reference Manual 60429800

FORM 1 Reference Manual 60496200

COMPASS 3 Reference Manual 60492600

SYMPL 1 Reference Manual 60496400

CDCS 1 Reference Manual 60498700

Data Base Utilities 1 Reference Manual 60498800

Query Update 2 Reference Manual 60384900

vi 60435400 C

Control Data Publication

DOL 1 Reference Manual

Query Update 3 Reference Manual

DOL 2 Reference Manual

SIMSCRIPT 3 Reference Manual

SIMULA 1 Reference Manual

APEX III 1 Reference Manual

A PT IV 2 Reference Manual

LCGT /IGS 1 Reference Manual

GPSS V /6000 1 General Information Manual

PERT /Time 1 Reference Manual

Total Universal 1 Reference Manual

8-Bit Subroutines 1 Reference Manual

Math Science Library 1 Reference Manual

Common Utilities Reference Manual

Application Installation Handbook

On-Line Maintenance Software Reference Manual

RBF Reference Manual

Publication No.

60359000

60498300

60498400

60358500

60234800

76070000

60499300

17322800

84003900

60133600

76070300

60495500

60327500

60495600

76071100

60436600

60499600

This product is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features
or undefined parameters.

60435400 C vii/viii

I

SECTION 1

SECTION 2

SECTION 3

60435400 C

CONTENTS

VOLUME 1

SYSTEM DESCRIPTION
Central Processor Unit
Central Memory

Central Memory Resident
Extended Core Storage

Peripheral Processor Units
Peripheral Hardware
Sys tern Softwar e
User Programs

FILES
Logical/Physical File Structure

Mass Storage Device File Structure
Magnetic Tape File Structure
Punch File Structure

File Types
Queue Files

Input Files (INFT)
Rollout Files (ROFT)
Timed/Event Bollout Files (TEFT)
Print Files (PRFT)
Punch Files (PHFT)

Special Files
Local Files (LOFT)
Direct Access Permanent File (PMFT)
Library Files (LIFT)
System Files (SYFT)
Primary Terminal Files (PTFT)

Queued File Management
Reserved File Names
Permanent Files
Device Residence
Accessing Files

Reading Files
Writing Files

Libraries

JOB FLOW AND EXECUTION
Job Initiation
Job Origin Types
Job Names

System Origin Type (SYOT) Job Name Format
Batch Origin Type (BCOT) Job Name Format
Time-Sharing and Export/Import (TXOT and EIOT)

Job Name Format
Validation
Accounting
Job Scheduling

1-1-1
1-1-1
1-1-1
1-1-2
1-1-2
1-1-2
1-1"":4
1-1-4
1-1-4

1-2-1
1-2-1
1-2-2
1-2-2
1-2-2
1-2-3
1-2-3
1-2-3
1-2-3
1-2-3
1-2-4
1-2-4
1-2-4
1-2-4
1-2-5
1-2-5
1-2-6
1-2-6
1-2-6

I 1-2 -6
1-2-7
1-2-8
1-2-9
1-2-9·
1-2-11
1-2-12

1-3-1
1-3-6
1-3-6
1-3-6
1-3-6
1-3-7 .

1-3-7
1-3-7
1-3-7
1-3-8

ix

I
SECTION 4

SECTION 5

SECTION 6

x

Job Control
Field Length Control
Input File Control
Time Limit Control
SRU Limit Control
Rollout Control
Error Control
Security Control

Job Completion

CONTROL LANGUAGE
Express ions

Constants
Arithmetic Operators
Relational Operators
Boolean Oper ators
Functions
Symbolic Names
Evaluation of Expressions

Control Language Statements
GOTO Statement
CALL statement
DISPLA Y Statement
SET Statement
IF Statement

Control Language Functions
FILE Function
NUM Function

Procedure Files
Time-Sharing Commarrls

ASCII Statement
CSET Statement
PARITY Statement

CONTROL STA TEMENT PROCESSING
Control Statement Format
Job Statement Format
Control Statement Processing Flow
Exit Processing

JOB CONTROL CONTROL STA TEMENTS
ACCOUNT
CHARGE Statement
COMMENT Statement
CTIME Statement
DA YFILE Statement
ENQUIRE Statement
EXIT Statement
LDI Statement
LENGTH Statement
LIMITS Statement
MFL Statement
MODE Statement
NOEXIT Statement
NORERUN Statement
OFFSW Statement
ONEXIT Statement
ONSW Statement

1-3-8
1-3-8
1-3-12
1-3-12
1-3-12
1-3-13
1-3-13
1-3-15
1-3-15

1-4-1
1-4-1
1-4-1
1-4-1
1-4-2
1-4-2
1-4-2
1-4-2
1-4-4
1-4-4
1-4-4
1-4-5
1-4-6
1-4-6
1-4-7
1-4-8
1-4-8
1-4-9
1-4-10
1-4-12
1-4-12
1-4-12
1-4-12

1-5-1
1-5-1
1-5-4
1-5-6
1-5-8

1-6-1
1-6-2
1-6-2
1-6-3
1-6-3
1-6-3
1-6-4
1-6-7
1-6-7
1-6-8
1-6-8
1-6~ 11
1-6-11
1-6-13
1-6-13
1-6-13
1--6-13
1-6-14

60435400 C

SECTION 7

60435400 C

PASSWOR Statement
RERUN Statement
RESOURC Statement
RFL Statement
ROLLOUT Statement
RTIME Statement
SETASL Statement
SETCORE Statement
SETJSL Statement
SETPR Statement
SETTL Statement
STIME Statement
SUBMIT Statement
SUI Statement
SUMMARY Statement
SWITCH Statement
USECPU Statement
USER Statement

FILE MANAGEMENT CONTROL STATEMENTS
ASSIGN Statement
BKSP Statement
CATALOG Statement
CLEAR Statement
COMMON Statement
CONVERT Statement
COpy Statement
COPYBF Statement
COPYBR Statement
COPYCF Statement
COPYCR Statement
COPYEI Statement
COPYSBF Statement
COPYX Statement
DISPOSE Statement
DOCMENT Statement
EVICT Statement
GTR Statement
LIBEDIT Statement
LIBG EN Statement
LIST80 Statement
LOCK Statem ent
L072 Statement
NEW Statement
OUT Statement
PACK Statement
PRIMARY Statement
RENAME Statement
REQUEST Statement
RESEQ Statement
RETURN Statement
REWIND Statement
ROUTE Statement
SETID Statement
SKIPEI Statement
SKIPF Statement
SKIPFB Statement

1-6-14
1-6-14
1-6-15
1-6-17
1-6-18
1-6-18
1-6-18
1-6-19
1-6-19
1-6-20
1-6-20
1-6-20
1-6-21
1-6-25
1-6-25
1-6-26
1-6-26
1-6-27

1-7-1
1-7-2
1-7-3
1-7-4
1-7-7
1-7-7
1-7-7
1-7-8
1-7-9
1-7-10
1-7-10
1-7-11
1-7-12
1-7-12
1-7-13
1-7-14
1-7-15
1-7-16
1-7-17
1-7-18
1-7-19
1-7-20
1-7-21
1-7-21
1-7-24
1-7-24
1-7-25
1-7-26
1-7-26
1-7-27
1-7-29
1-7-29
1-7-30
1-7-3"1
1-7-34
1-7-35
1-7-35
1-7-35

xi.

SECTION 8

SECTION 9

SECTION 10

SECTION 11

• xii

SKIPR Statement
SOR T Statement
STAGE Staterrent
TDUMP Statement
UNLOAD Statement
UNLOCK Statement
VERIFY Statement
VFYLIB Statement
WRITEF Statement
WRITER Statement

PERMANENT FILE CONTROL STA TEMENTS
APPEND Statement
A TTACH Statement
CA TLIST Statement
CHANGE Statement
DEFINE Statement
GET Statement
OLD Statement
PACKNAM Statement
PERMIT Statement
PURGALL Statement
PURG E Statement
REPLACE Statement
SA VE Statement

LOAD/DUMP CENTRAL MEMORY UTILITY CONTROL
STATEMENTS

DMP Statement
DMD Statement
LBC Statement
LOC Statement
PBC Statement
RBR Statement
WBR Statement

TAPE MANAGEMENT
ASSIGN Statement
BLANK Statement
LABEL Statement
LISTLB Statement
REQUEST Statement
VSN Statement
Magnetic Tape Formats

Data Formats
End-of-Tape/End-of-Reel Conditions

PRODUCT SET CONTROL STATEMENTS
User Libraries
Control Statement Formats

ALGOL Statement
BASIC Statement
COBOL Statement
COBOL5 Statement
FTN Statement
SOR TMRG Statement

1-7-36
1-7-36
1-7-38
1-7-39
1-7-40
1-7-40
1-7-41
1-7-42
1-7-42
1-7-42

1-8-1
1-8-5
1-8-6
1-8-8
1-8-10
1-8-11
1-8-12
1-8-12
1-8-13
1-8-14
1-8-14
1-8-15
1-8-15
1-8-16

1-9-1
1-9-1
1-9-2
1-9-2
1-9-3 .
1-9-4
1-9-4
1-9-5

1-10-1
1-10-11
1-10-12
1-10-13
1-10-16
1-10-17
1-10-18
1-10-21
1-10-21
1-10-29

1-11-1
1-11-1
1-11-2
1-11-3
1-11-6
1-11-8
1-11-11
1-11-17
1-11-23

60435400 C

SECTION 12 CHECKPOINT/RESTART 1-12-1
CKP Statement 1-12-1
RESTART Statement 1-12-2

SECTION 13 DEBUGGING AIDS 1-13-1
Central Memory Dumps 1-13-1
Generating Meaningful Dumps 1-13-2
Reading CM Dumps 1-13-3

SECTION 14 SYSTEM UTILITY CONTROL STA TEMENTS 1-14-1
EDIT Statement 1-14-1
MODIFY Statement 1-14-2
OPLEDIT Statement 1-14-4
UPDA TE Statement 1-14-6
UPMOD Statement 1-14-9
KRONREF Statement 1-14-10

APPENDIXES

APPENDIX A CHARACTER SETS 1-A-1

APPENDIX B DA YFILE MESSAGES 1-B-1

APPENDIX C LIBEDIT l-C-1

APPENDIX D JOB OUTPUT INFORMA TION 1-D-1

APPENDIX E PERMANENT FILE DEVICE STA TIS TICS 1-E-1

APPENDIX F CARD FOHMA T AND CONVERSION PROBLEMS 1-F 1

APPENDIX G TAPE LABELS 1-G-1

APPENDIX H GLOSSARY 1-H-1 I

INDEX

FIGURES

1-1-1 Central Memory Layout 1-1-3
1-2-1 Sample Card File Structure 1-2-2
1-2-2 Sample Random Access File Format 1-2-10
1-2-3 Modified Sample Random Access File 1-2-13
1-3-1 Bas ic Job Deck 1-3-1
1-3-2 COMPASS Assemble and Execute Deck 1-3-2
1-3-3 COMPASS Assemble, Execute, and Punch Binary Deck 1-3-3
1-3-4 FORTRAN Compile and Execute Deck 1-3-4
1-3-5 FORTRAN Load and Run Deck 1-3-5
1-3-6 Field Length Control Statement 1-3-10 I
1-5-1 Control Statement Processing Flow 1-5-7
1-7-1 Sample Page of Catalog of SYSTEM 1-7-5
1-13-1 Exchange Package 1-13 -1
1-13-2 Main Program of Main Overlay (0,0) 1-13-5
1-13-2 Function Subroutine of Main Overlay (0, 0) 1-13-6
1-13 -4 Subroutine of Main Overlay (0,0) 1-13-6

60435400 C xiii

1-13-5 Main Program of Primary Overlay (1,0) 1-13-7
1-13-6 Loader Map of Main Overlay (0,0) 1-13-8
1-13-7 Loader Map of Primary Overlay (1, 0) 1-13-11
1-13-8 Program Output 1-13-11
1-13-9 Exchange Package Dump 1-13-12
1-13-10 Central Memory Dump 1-13-12

TABLES

1-8-1 Combinations of Multiple Access 1-8-7
1-11-1 Principal Products Supported by NOS 1-11-1

VOLUME 2

SECTION 1 INTRODUCTION 2-1-1

SECTION 2 PROGRAM/SYSTEM COMMUNICATION 2-2-1

SECTION 3 FILE CREATION AND INPUT/OUTPUT 2-3-1

SECTION 4 LOCAL FILE MANAGER 2-4-1

SECTION 5 PERMANENT FILE MANAGER 2-5-1

SECTION 6 CONTROL POINT MANAGER 2-6-1

SECTION 7 QUEUE FILE MANAGER 2-7-1

SECTION 8 QUEUE DUMP /LOAD PROCESSOR 2-8-1

SECTION 9 SYSTEM FILE MANAGER 2-9-1

SECTION 10 JOB CONTROL 2-10-1

SECTION 11 SYSTEM /LOADER REQUESTS 2-11-1

SECTION 12 PROGRAM WRITING TECHNIQUES 2-12-1

APPENDIXES

APPENDIX A CPU COMMON DECKS 2-A-1

APPENDIX B EXAMPLES OF RANDOM I/O 2-B-1

APPENDIX C CODING SPECIFICA TIONS 2-C-1

APPENDIX D PROGRAM EXAMPLE 2-D-1

APPENDIX E SPECIAL USER INFORMA TION 2-E-1

APPENDIX F SPECIAL ENTRY POINTS 2-F-1

APPENDIX G BINARY FORMA TS 2-G-1

APPENDIX H COMPASS CONTROL STATEMENT 2-H-1

• xiv 60435400 C

SYSTEM DESCRIPTION 1

The CDC CYBER 170 Series, Models 172, 173, 174, and 175 Computer Systems, CDC
CYBER 70 Series, Models 71, 72, 73, "and 74 Computer Systems, and 6000 Series Computer-I
Systems consist of four logical hardware components. They are:

• Central processor unit

• Central memory

• Peripheral processor units

• Associated peripheral equipment

These hardware elements are controlled and coordinated by two basic levels of software,
the system software and user programs. This section describes briefly these hardware
and software elements and their relationship within the Network Operating System (NOS).

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) performs computational tasks but has no input/output
(I/O) capability. It communicates with the external world through central memory.
Under NOS, the CPU is used to assemble, compile, and execute user programs and to
perform several system functions and utilities.

The CDC CYBER 170 Series, CDC CYBER 70 Series, and 6000 Series Computer Sys-
tems provide two types of central processors. However, the programmer need be con­
cerned only with the distinction between the two types when writing COMPASS programs.
Certain instructions, if properly arranged, may be executed simultaneously by the CDC I
CYBER 170/Model 175 CPU, CDC CYBER 70/Model 74 CPU, and the 6600 CPU. For
more information about CDC CYBER 170, CDC CYBER 70, and 6000 systems refer to
the hardware reference manuals listed in the preface.

CDC CYBER 170 and CDC CYBER 70 series computers are equipped with a central
exchange jump/monitor exchange jump (CEJ /MEJ)" feature. This feature enables the
system to switch control between the system monitor and a user program. CEJ /MEJ is
an option on 6000 series computers. It should be used when available to improve job I
performance (refer to section 2 of volume 2).

CENTRAL MEMORY

Under NOS, central memory (CM) is used for three basic pu:rposes.

• To hold 'instructions to be executed "by the CPU

• To hold data to be manipulated by the CPU

• To buffer data to and from peripheral processors

60435400 C 1-1-1

NOS supports the following standard CM sizes.

6000 and CDC CYBER 70 - 32K, 49K, 65K, 98K, and 131K

CDC CYBER 170 - 32K, 49K, 65K, 98K, 131K, 198K, and 262K

Several programs can reside in CM simultaneously in hardware protected areas called
control· points. The fact that these control point areas are hardware-protected means
that a program cannot reference an address outside its field length. NOS supports a
maximum of 278 control points. Each control point may use no more than 3777008
CM words. The· user need be concerned only with the memory assigned to his own
control point. The system assigns the CPU to the control points requiring CPU activity.
Normally, the assignment of the CPU is switched rapidly between the control points to
allow all programs in memory to execute. The exact amount of time allowed for each
control point depends on system activity and system parameters. Thus, a job may
take more real-time to complete at one time than at another. The user has no control
over this switching process.

I The user program communicates with the system by placing requests in address 1 (HA+1) of
the control point (described in section 2 of volume 2). RA is the reference address that
specifies the beginning of the user's control point memory area.

When a user program completes, aborts, or is rolled out, the control point is released
and made available to another program.

CENTRAL MEMORY RESIDENT

A portion of CM is reserved for system use. This area is, in effect, a control point
with special privileges. This area is called central memory resident (CMR). It con­
tains system tables and directories as well as the CPU portion of the system monitor.
(CPUMTR).

Figure 1-1-1 illustrates the layout of CM and shows the relationship between CMR and the
user control points.

EXTENDED CORE STORAGE

Extended core storage (ECS), a second, slower form of memory, is also available.
NOS treats ECS as a mass storage device; it can be used:

• For storing frequently accessed data. Refer to ASSIGN Statement in section 7,
and Permanent File Control Statements in section 8.

• As an alternate system device for storing copies of ABS, OVL, and PP type
routines. Refer to the SYSEDIT control statement in the installation handbook
for further information.

The FOR TRAN and COMPASS statements for ECS data storage / retrieval are not sup­
ported by NOS.

PERIPHERAL PROCESSOR UNITS

The peripheral processor units (PPUs) are small processors that provide communication
paths between the central processor and individual peripheral equipment. NOS supports
the 10, 14, 17, and 20 PPU configurations of CDC CYBER 170/Models 173, 174, and

1-1-2 60435400 C

Control
Point

2

n-l

n

~

Central
Memory
Hesident

•
•
•

Address
o

CMR
HA length

1

"' ..

HA
n

'--______________ __'CMRlength + FL1 + FL2 + ..• + FLn

Figure 1-1-1. Central Memory Layout

175 (the Model 172 supports 10 PPUs only) and CDC CYBER 70/Models 71, 72, 73, and 74.1
The 7, 8, 9. 10, and 20 PPU configurations are supported for 6000 series computers.
A peripheral processor can:

• Head and write Cl\l

• Read and write ECS indirectly via CM or directly via the distributive data
path (DDP)

• Transmit data to and receive data from peripheral devices using the data
channels

The peripheral processors also perform those system control functions that are better
handled by a PPU than by the central processor.

For further information about PPUs, refer to the appropriate system hardware reference
manual listed in the preface.

60435400 C 1-1-3

PERIPHERAL HARDWARE

The system peripheral hardware varies from installation to installation but usually in­
cludes card readers and punches, line printers, mass storage devices, and magnetic
tape units. The following equipment is supported by NOS.

405 Card Reader

415 Card Punch

512 and 580 Line Printers

841 Multiple Disk Drive

844-21 Disk Storage Subsystem

844-41 Disk Storage Subsystem

I 844- 44 Disk Storage Subsystem

Extended Core Storage

657, 659, 667, and 669 Magnetic Tape Units

6671 Multiplexers for communication with 200 User Terminals and 731-12/732-12
Remote Batch Terminals

6671 or 6676 Multiplexers for communication with interactive terminals

I 2550 Host Communication Processor

The user need be concerned with these devices only to the degree tha:t they affect the
format of data being transferred in the system.

SYSTEM SOFTWARE

The system consists of the group of CPU and PPU programs that control the flow of
user programs and satisfy any special requests that these programs may make. These
special requests include such functions as resource allocation requests and I/O
requests.

USER PROGRAMS

A user program is a group of CPU instructions defined by a user to perform a certain
task or calculate a specific result. A user program maybe written in a language at
any of three levels.

•

•

•

1-1-4

Compiler languages provide the user with a language suited to his particular
needs. The program statements are translated by the appropriate compiler
(FORTRAN, COBOL, ALGOL, etc.) that generates assembler language or
machine language instructions. Programs written in compiler languages are
usually machine- independent.

Assembler languages provide a one-to-one relationship between instructions and
machine operation. Mnemonics are provided for. each instruction. These
languages are normally used by advanced programmers because they are
machine-dependent. Most of the NOS system is written in COMPASS, the
assembler language of the CDC CYBER 170, CDC CYBER 70, and 6000 series
computers.

Hardware instructions are interpreted directly by the computer, and therefore,
require no interpretation by a compiler or assembler. Each hardware instruc­
tion is a binary number. The programmer is rarely concerned with instruc­
tions written at this level. The exception is when program debugging requires
that the user scan memory dumps.

60435400 C

FILES 2

A file is the largest collection of information addressable by name. It begins with a
beginning-of-information (BOn, an indicator which precedes all data in the file. A file
consists of one or more logical records of information. A logical record is a group of
related words or characters, of fixed or variable length, which is independent of its
physical environment.

The end of a logical record is the end-of-record (EOR). The end of a logical file is
the end-of-file (EOF), the end-of-information (EO!), or both. If both, the EOF pre­
cedes the EO!. An EOI is the last physical item of information on a file. Because of
this EOF IEOI conceptJl a file may actually be a multifile file. For example:

(BOndata •.•• (EOR) .••• data ••.• (EOR)(EOF) •••. data .••. (EOR){EOF)(EOI)

File names are 1 to 7 alphanumeric characters. t

Examples:

A 123 TAPE ~ 1A2B COMPILE

LOGICAL/PHYSICAL FILE STRUCTURE

The actual s.tructure of the BOI JI EOR, EOF, and EOI indicators depends on the device
on which the information. is stored.

The user defines the logical format of a mass storage or magnetic tape file when he
issues control statements or language specifications to create the file. Once a file is
created, it can be transferred from one storage medium to another without affecting its
logical format.

To take advantage of the physical characteristics of the medium on which a file is to be
stored, the system converts all user-defined logical file structures into a system-defined
physical file structure. In general, for higher-level language users, this conversion
process and the resulting physical file format are transparent. All file-related control
statements and language specifications transfer data or position a file according to its
logical definition. COMPASS users, on the other hand, have the option of reading,
writing, or positioning a file according to its logical or physical format.

The basis of all physical file structures is the physical record unit (PR U). The size of
a PRU depends on the storage medium used.

I

t The product set modules (section 11) do not support file names that begin with a numeric. I

60435400 C 1-2-1

I

MASS STORAGE DEVICE FILE STRUCTURE

All data stored on mass storage devicest is written in 64 CM word PRUs. A logical
record consists of one or more of these PRUs. The last PRU of a mass storage logi­
cal record must be a short (less than 64 CM words) or zero-length PRU.

A BOl for a mass storage file is the disk address for the file listed in the file name
table (FNT). An EaR is a PRU containing less than 64 words and having a link to the
next PRU in the file. An EOF for a mass storage file is a zero-length PHU (that is.
a PRU containing no data) with a special link to the next PRU in the file. An EOl is
a zero-length PRU with no forward link. The absence of a link signifies the EOl.

MAGNETIC TAPE FILE STRUCTURE

The operating system uses standard 7- or 9-track. 1 12-inch magnetic tape. BOlon
magnetic tape is the load point. The definition of PR Us and of the EOR. EOF. and EOl
indicators varies according to the format in which the data was recorded. Any of the
following formats can be specified: external (X). blocked (B). line image (E). internal (I).
system internal (SI). stranger (S). long block stranger tape (L). and foreign (F). Refer to
section 10 for a description of each of these formats.

PUNCH FILE STRUCTURE

Because the physical characteristics of cards define the data. cards do not have a PRU
size as previously defined. Refer to appendix F for the conversion procedures used
for the various types of punch cards. The logical format of the file is indicated as
follows:

• The first card in the deck is the BOl

• A 7/819 punch in column 1 represents an EOR

• A 6/7/9 punch in column 1 represents an EOF

• A 6/7/8/9 punch in column 1 rep~esents the Ear

Thus. a deck can consist of many files which can consist of many records. as illustrated
in figure 1-2-1.

~6

Eor ----+ I ~
~M==-=="~~~~~§_

EOR ~n

I~~b~~~~~ [OF~

~

~7
[OR ~ 8

9

BO! ~ (JOB

Figure 1- 2-1. Sample Card File Structure

t ECS files are allocated in the same manner as all mass storage files.

1-2-2
60435400 C

FILE TYPES

Active files in the system are classified by their file type, Whenever a file is active,
one or more entries are made in the file name table (FNT). The FNT entry and the
file status table (FST) entry comprise a two-word description of the file. These two
entries contain the name of the file, the device on which the file resides, the file type,
the current position, and the current status. All system tasks involving a file use
this two-word entry for control.

In each of the following descriptions, the file type and its mnemonic (such as INFT)
which the system uses internally for file classification are listed.

QUEUE FILES

Five types of files are defined as queue files. They are categorized as such because
of the kinds of information they contain and the manner in which the system processes
them. Queue files always reside on mass storage. When a queue file is ready to be
processed, the system or the user places it in a queue where it waits until the re­
quired system resource or peripheral equipment becomes available.

Input Files (INFT)

Input files are the job fil.es of the system. They contain all user-supplied control
statements and program data. There are two ways a fUe can be placed in the input
queue, directly by the system in initiating a local or remote batch job for processing
and indirectly by a user job in submitting another job via a SUBMIT control statement,
an LOI control statement, or a' ROUTE control statement. I
When central memory space becomes available, either because a job has completed
or because a job in the input queue has a higher priority than that of a job being
processed, the input file is scheduled for processing (in other words, the job is
assigned to a control point in central memory). Refer to section 3 for a description
of the elenlents of jobs and the processes of job initiation and scheduling.

Rollout Files (ROFT)

At some stage in the processing of a job, the system or the user may determine that
the job must be temporarily removed from central memory. When this occurs, the
system writes all information concerning the job on a system-defined rollout file. The
rollout file includes the contents of the job's central memory field length and the job­
related system information fronl CMR. The file is read back into central memory
when the job is again scheduled at a control point. (Refer to Rollout Control in
section 3.)

Timed/Event Rollout Files (TEFT)

A timed/event rollout file is similar to an ROFT file in that it contains all the infor­
mation concerning a job temporarily removed from central memory. A TEFT file,
hovvever, is rolled back into central memory only when a specified event has occurred
(such as a file is no longer busy) or a specified time period has elapsed.

60435400 C 1-2-3

I

I

A job may be rolled out on a TEFT file as a result of system or user action. The
system uses a timed/ event file if a job issues certain requests for a file or device
that cannot be immediately honored. The COMPASS programmer can use the ROLLOUT
macro to roll out his job subject to specified time and/ or event dependencies.

Print Files (PRFT)

A print file contains data the user wishes to have printed during his job or upon job
completion. The system-assigned name for print files is OUTPUT. t OUTPUT is
placed in the print queue either by the system when the job completes or by the user
via an OUT control statement. The user can also utilize a ROUTE or DISPOSE control
statement.

Once a file enters the print queue, it is processed by the local or remote batch printer
processor. Then, when a printer becomes available, the PRFT file with the highest
priority is printed.

Most system utility reports are written on OUTPUT unless the user specifies an
alternate file. OUTPUT has no special internal format. Refer to appendix F for a
description of conversion methods and printer control characters and to appendix D for
a description of job output information.

Punch Files (PHFT)

Punch files contain data that the user wishes to have punched on cards during his job
or upon job co.mpletion. The system-assigned names for punch files are:

PUNCH

PUNCHB

P8

Contains Hollerith punch output

Contains binary punch output

Contains 80-column absolute binary punch output

These files are released to the punch queue when the job completes. In addition, the
user can utilize an OUT, ROUTE, or DISPOSE control statement in the same manner
as described for PR FT files to place a file in the punch queue.

Refer to appendix F for a description of the format of the PUNCH, PUNCHB, and P8
files.

SPECIAL FILES

Of the five special files, the first two described (local and direct access permanent
files) are general-purpose, and the remaining three (library, system, and primary
terminal) are special-purpose.

Local Files (LOFT)

All scratch and working files are designated as local files. The user can create a
local file in three ways; he can:

1. Implicitly create a local file by making the first reference to it in one of the
COpy control statements. any read or write language specification. or an OPEN

I t For time-sharing jobs, the name OUTPUT has special meaning. Refer to section 12.,
volume 2, and to the Time-Sharing User's Reference Manual.

1-2-4 60435400 C

macro. Local files created in this manner always reside on mass storage.

2. Create a local file by preceding any COpy statements, read or write specifi.:.
cations, or OPEN macros with an explicit control statement or macro file
definition. The ASSIGN control statement or the REQUEST control statement
or macro assigns a local file to mass storage or magnetic tape. The LABEL
control statement or macro assigns a local file to magnetic tape.

3. Use a GET control statement or macro to generate a local mass storage copy of an
existing indirect access permanent file. For a description of indirect access
permanent files, refer to Permanent Files in this section •.

Unless the user includes a control statement or macro to change a local file to another type
of file, it is released upon job completion.

Direct Access Permanent Files (PMFT)

A direct access permanent file is the type of permanent file that can be accessed
directly rather than through the use of a working copy. The user creates a direct
access file with the DEFINE control statement or macro. Once the file is created, the
originator or anyone else to whom the originator has given permission can assign the
file to his job with an ATTACH control statement or macro. The file remains in the system
until the originator removes the file with a PURGALL control statement, or the originator
or any other user with the necessary permission removes the file with a PURGE control
statement or macro.

For further information about direct access permanent files and their relationship to
indirect access permanent files, refer to Permanent Files in this section.

Library Files (LIFT)

A library file is a read-only file that can be accessed by several users. A user must
be validated to access! create library files. Note that this type of file should not be
confused with system library programs or public permanent files (user number LIBRARY).

A library file is created by performing the following steps.

1. Create a local file lfn.

2. Enter the following directives as control statements or macros.

LOCK(lfn)
COMMON (lfn)

If a user wishes to read this file and knows the file name, either the COMMON control
statement or ASSIGN macro is entered. When either of these functions is performed,
an FNT e"ntry representing this file as a library type file is created.

A library file cannot be removed from the system once it has been created except by a
deadstart. Library files are not retained on initial (level 0) deadstart. They are
retained on level 1 or 2 deadstart if a system checkpoint was done after their creation.
They are always retained after a level 3 deadstart. I
For a description of the relationship between LIFT files and other libraries and library
files, refer to Libraries in this section.

60435400 C 1-2 ... 5

Syst emF i1es (SYFT)

The system uses SYFT files for retaining special system information. SYFT files
always reside on mass storage. Although the COMPASS programmer who is validated
to create system files can do so with an ESYF macro, only special system programs
can access them. Once a system file is created, no user including the originator can
remove it. However, system files are lost at system deadstart unless the operator
recovers them.

P ri ma ry Te rm ina I Fi les (PTFT)

The primary file is the main working file for the user. Of several files which may
be local to his job, the user may designate one file to be the primary file by using
a NEW or PRIMARY statement. (A copy of an indirect access file may be retrieved
and made a primary file using the OLD statement.) This becomes the default file if
a file name is not specified. Only one primary file is available to the user at a time.

QUEUED FILE MANAGEMENT

Queued file management routes all output generated by a job to the remote batch ter­
minal where the job was created. This is implemented by assigning a unique terminal
identification code (TID) every time a remote batch terminal is logged in. (The TID
can be the user index associated with the user number when logging in.)

When a job from a remote batch terminal is put into the input queue, the TID is asso­
ciated with the job input file. This TID is transferred to any print or punch file that
is generated by job processing. At job termination, the system uses the TID to route
the output file to the remote batch terminal of job origin. In a similar way, a central
site card reader may be assigned an identification number (ID) to route batch output
files to a line printer or card punch with the same ID.

The user can route output files to a particular device rather than accept the TID de­
fault. The particular device can be specified on the basis of device type (printer
model, punch format, etc.), external characteristics (ASCII, 029, etc.), or forms.
code (requires special form selection). Refer to ROUTE control statement, section 7
for a description of file routing.

RESERVED FILE NAMES

Several file names are reserved for system use or have special significance to the
system. These reserved names protect the user from accidentally destroying some of
his own files. The message

RESERVED FILE NAME.

indicates that the user has attempted to use one of these files.

The reserved file names are:

INPUT
OUTPUT
PUNCH
PUNCHB
P8

1-2-6

SCR
SCRt
SCR2
SCR3
SCR4

60435400 C

A number of the product set members, such as the COMPASS assembler, use other
scratch files in addition to those listed.

Since system integrity does not depend on preventing the use of these reserved file
names, an attempt is not always made to prevent their use.

PERMANENT FILES

The user can create, retain, and access files which are available until he specifically
decides to remove them from the system. These files are called permanent files.
There are two types of permanent files.

• Direct access permanent files are accessed using normal I/O procedures,
including random read and write requests. Direct access permanent files

•

are allocated in large bloCKS; t thus, they are generally used as large data
base files. Direct access files have a write interlock. This means that if
one user has attached the file in write mode, it cannot be attached by an­
other user. Likewise, if a user wishes to attach the file in write mode, he
must wait until all current users have completed using the file. The user
should also note that because data is written directly on the file rather than
on a working file, care must be taken when modifying a direct access file.

The maximum size of a direct access file is determined either by the DS validation
parameter described in the LIMITS control statement, section 6, or if no DS re­
striction is imposed, by the device limitations described in appendix E.

Indirect access permanent files are accessed by using a working copy of the
file as a local file attached to the user's job. This working copy is obtained
with the OLD control statement or the GET control statement or macro. I
If the user wishes the working copy to remain permanent after the file has
been altered, the SA VE or REPLA CE functions must be . issued. Indirect
access files are allocated in blocks of 64 central memory words (640 char­
acters). Because of this smaller block size and the convenience of a work­
ing copy, the indirect access file is generally the method used to create a
small permanent file that does not require a write interlock.

The maximum size of an indirect access file is determined either by the FS
validation parameter described in the LIMITS control statement, section 6,
or if no FS restriction is imposed, by the device limitations described in
appendix E.

User access of permanent files is based on the user number entered with the USER control I
statement. This user number is a 1- to 7-character value which represents a specific
catalog in the permanent file system. Unless otherwise specified by an optional (alternate)
user nU111ber, all permanent file requests are made to this catalog.

User numbers that contain asteriSKS represent users with automatic read-only permission
to files in catalogs of other users. The user number must match the alternate user
number in all characters not containing asteriSKS. For example, the user with the user
number ~:~AB~:~DE~:~ can access the catalogs of the following users.

UABCDEF

UABDDEE

MABCDEl

MABIDE3

t Refer to Permanent File Device Statistics, appendix E.

60435400 C 1-2-7

I

DEVICE RESIDENCE

For most file operations. the user need not be concerned about the specific device on
which his file resides. However. under certain circumstances the user may wish to
override the system default device residence for local or permanent files.

With the ASSIGN control statement. any user who has the necessary validation can assign a
local file to either a specific magnetic tape or mass storage device or to one of a type
of magnetic tape or mass storage devices.

Every permanent file the user creates resides either in his family of permanent file de­
vices or on an auxiliary device. Unless the user specifies otherwise. all permanent
files are saved in his family.

A family consists of 1 through 63 mass storage devices. Within a family, each user
has a master device that contains his permanent file catalog. all indirect access files,
and some or all of his direct access files.

Normally a system has only one family of permanent file devices. However, because
families are interchangeable between NOS systems, several families may be active on
one system or a system may be in multimainframe mode. For example, consider an
installation with two systems, A and B. System A provides backup service to system
B. If system A failed, its family of permanent file devices could be introduced into
system B without interrupting current operations on systemB.

The user identifies his family by supplying a 1- to 7-character family name. The family
name is included on the USER statement in batch jobs and is entered during login in
time-sharing jobs. If only one family is active or if another family has been introduced
into the user's normal system, he "may but need -not supply his family name. When the
family name is omitted. the system uses the system default family name. If the user's
family has been introduced into another system, he must supply his family name.

If the user chooses to save his files on family devices. he has the option of either using the
system default device type or of specifying another type of permanent file device.

An auxiliary device is a supplement to the mass storage provided by family devices.
It is identified by a 1- to 7-character pack name. An auxiliary device is not necessarily
a disk pack that can be physically removed as the pack name implies. Rather, an
auxiliary device can be any mass storage device supported by the system and defined
as such by the installation. Each auxiliary device is a self-contained permanent file
device; all direct and indirect access files represented by the catalogs on the device
reside on the device. Auxiliary devices may be defined as public or private. Anyone
permitted to use auxiliary devices who supplies the appropriate pack name can create,
replace. and access files on a public device. Only one user, the owner, can create
and replace files on a private auxiliary device, but others may access those files as
permitted by the owner.

1-2-8
60435400 C

ACCESSING FILES

The two methods used to access files attached to a job. are sequential and random access.
Any file can be accessed sequentially; however. only mass storage files can -be accessed
randomly. t I
To read a file randomly. the system reads a portion of the file without reading all infor­
mation in the file. from the current position to the desired position. Any mass storage
file can be read randomly if the user knows which relative PRU (that is. which PRU in
relation to the BOl) he wishes to read. The desired PRU can be read by placing the PRU
number in the file's communication area (FET) and making the proper I/O requests
(refer to section 3, volume 2).

Several methods of random processing exist. The specific method depends on the lan­
guage being used; however. in all cases. the following points apply.

•

•
•

1\1:ost random I/O operations require a directory or index that contains the
relative PRUs of records in the file.

An EaR or EOF I/O operation transfers one PRU for the EaR or EOF.

When randomly rewriting data within a file. the user must take care to ensure
that data follow ing the area he wishes to write is not destroyed.

Figure 1-2-2 illustrates a typical example of the structure Of a random access file.

READING FILES

To read record 3 sequentially. the program rewinds the file to BOI, reads the file.
and counts the number of EaRs. System utilities and macros can be used to skip the
records; however. the primary consideration is that the data must be read to determine
where record 3 begins.. Once this is determined. record 3 can be read.

If a directory exists for this file. the only requirement is that the random address of
record 3 be obtained from the directory and placed in the FET. The proper random
read requests can then be issued. To perform this random read on record 3. the following
steps are required.

• Skip to the EOr. This is done by the system without reading the entire file.

• Backspace two logical records (one record for the EOF and one for the
directory). The system must read both records to perform this operation.

• Read the directory to obtain the random address to be placed in the FET.

I NOTE I
The EOF mayor may not be used at the end of this
file. The language and methods used to build the di­
rectory determine whether an EOF is used.

In summary. to access record 3 sequentially. four PRUs must be read. To access the
record randomly. only three PRUs are read: two PRUs to position for the directory
and one PR U to read the directory.

For additional random accesses to any record in the file. it is not necessary to access
the directory again if it remains in central memory.

t Record Manager random files are treated sequentially by the operating system. I

60435400' C 1-2-9

0 BOI
System Information

1
vi ord count = 64

2
Word count = 30

EOR
3

Word count = 10
EaR

4
Word count = 0

EOF
5

Word count = 64

6
Word count = 10

EaR
7

Word count = 64

8
Word count = 64

9
Word count = 10

EaR
10

Directory }EOR
11

EOF
12

EOl

The directory can be built
in any format. This is a
typical example.

o 7000 0016 0 0

Identifier
Table

~ •
•
•

15

16 Record 1

94 I 1

18 Record 2

10 I 3

20 Record 3
74 I 5

22 Record 4

138 I 7

i i
record random
length address

::::

Figure 1-2-2. Sample Random Access File Format

Each directory entry contains the record name, the first PRU of the record (random
address), and the record length. The directory can be placed anywhere in the file.
The only requirement is that those users who wish to access the file randomly know
where to position the file in order to read the directory. However, the directory
usually precedes the EOF IEOI.

1-2-10 . 60435400 B

WRITING FILES

After reading and modifying record 3 of the sample file, the user may wish to rewrite
the record in the file. If the modifications have not changed the number of PRUs re­
quired, a write operation can be used to replace the existing record with the modified
record. This write operation must be issued as a random I/O operation. (Refer to
section 3, volume 2 for a complete description of the method.) However, if the
modifications' have changed the number of PRUs required, data following the record
being written is lost. For example, the size of record 3 in the sample file is 74
words or two PRUs. A maximum of 53 words can be added to the record without
requiring an additional PRU and destroying data. If a random write request that adds
53 words to record 3 is issued, the file has the following format.

4
Word count = 0

EOF

record 3\
5

Word count = 64

6
Word count = 63

EOR
7

Word count = 64

8

9

This operation is called a rewrite in place. If the write is issued as a nonrandom write
operation, the file has the following format.

4
Word count = 0

EOH

record 3\
5

v..r or'd count = G4

G
\Vor'd count - 63

7

EOI

All data following the inserted data is destroyed. If the word count for record 3 is
increased to 138, the file has the following format.

60435400 B 1-2-11

4
Word count = 0

EOR
5

Word count = 64

6
record 3 Word count = 64

7
Word count = 10

EOR
8

9

PRU 7 is destroyed by the write operation. To properly rewrite record 3 without de­
stroying the contents of PRU 7, the user should issue a write request at the end of the
file and alter the directory to reflect the change. Figure 1-2-3 illustrates the updated
file containing the new directory and the 138-word modified record 3 written at· the
end of the file.

LIBRARIES

The term library can be us~d in four ways in the system. The following paragraphs define
the various types of libraries and the methods, if any, by which the user accesses them.

• System library. The system library consists of the assembled routines that com­
prise the operating system and its associated product set. System routines may
reside in central memory, mass storage, or ECS. The user accesses the
system library indirectly when a system routine is executed in response to a
control statement or macro call. A complete copy of the system library is saved

. on a read-only file named SYSTEM. Refer to the CATALOG control
statement in section 7 for a partial list of the system library routines.

• Program library. A program library is a group of source deck images saved
on a program library file in compressed format. There are two system-de­
fined program libraries, OPL and OLDPL. OPL contains operating system
routines saved and maintained in Modify format via the MODIFY control state­
ment. OLDPL contains product set routines saved and maintairted in Update
format via the UPDATE control statement. In addition, the programmer can
use a MODIFY or UPDATE control statement to create and edit his own pro­
gram library.

• User library. Before a user's compiled program can be executed, all external
references must be satisfied. The loader satisfies externals by searching
user libraries. A user library is a group of compiled or assembled object
time routines saved on a user library file. There are three types of user
library files: user-generated, product set, and system.

1-2-12 60435400 B

BOI 0

1
Word count = 64

2
Word count = 30

EOR
3

Word count = 10
EOR

4
Word count = 0

EOF

11
Word count =-0

EOF
12

Word count = 64

13
Word count = 64

14
Word count = 10

15
Directory

EOR}

EOR
16

EOF
17 EOI

o 7000 0016 0 --- 0

"'ro-

Identifier
Table

• • •
Record 1

94 I 1

Record 2

10 I 3

Record 3

138 I 12

Record 4

138 I 7

t t
record random
length address

Note that the record 3
pointer in the directory
has been updated.

Figure 1-2-3. Modified Sample Random Access File

'~

Appendix B, volume 2 contains examples of COMPASS programs that create, read,
and write a random file.

60435400 B 1-2-13

I •

1-2-14

User-generated libraries are created with the LIBGEN control statement and
can be specified on LIBRARY and! or LDSET control statements. Refer to the
Loader Reference Manual for further information. Product set libraries re­
side as ULIB type records on the system library. They are listed in section
11. If some externals remain unsatisfied after searching these libraries, the
loader searches the system default user library SYSLIB, which also resides
as a ULIB record on the system library.

User number LIBRARY. An installation can save under the user number
LIBRARY permanent mass storage files containing programs or text of general
interest (such as application programs and procedure files).

60435400 C

JOB FLOW AND EXECUTION 3

A job consists of a file of statement images grouped into several records. The first
logical record contains the control statements that specify the job processing require- I
ments. Each control statement is an individual job step. Every job begins with a job
statement and ends with an EO!. All other control statements directly follow the job
statement. The end of the control statements is marked by an EaR, EOF, or an EO!.
Figure 1-3 -1 illustrates a basic job deck.

T
RECORD

PROGRAM
RECORD

CONTROL
STATEMENT

RECORD

~

~
8
9

rJ

Eor

{RECORD SEPARATOR}

{RECORD SEPARATOR}

CHARGE STATEMENT -11-1':
,'_U=S=E R_ -.-..S=T=A-T_E=M:E=NT=========:- IIj I e-

J 08 STATEMENT '111
11

Ir

Figure 1- 3 -1. Basic Job Deck

60435400 C 1- 3-1

I

I

Figure 1-3-2 illustrates a COMPASS source deck that produces the object code and a
listing and executes the binary file using the input data supplied.

1-3-2

DATA
RECORD

PROGRAM
RECORD

CONTROL
STATEMENT

I

b
7
8
9

81= -

"
7
8
9

'f'
_~.N~ ~

-

" IDDn BIG

7
8
9

~LGO.

COMPASS.

CHARGE{S9,b91NS}
USER{ABC,PASS,FAMA}

J08AAA{T1DDU,(MSDDDD,P3}

I
I

1-

-

-
II

~

~

~

-
Figure 1-3-2. COMPASS Assemble and Execute Deck

60435400 C

Figure 1-3-3 illustrates a COMPASS, deck that assembles th~ program, produces binary
punched files of each subprogram, and executes the object cocfe 01' the first program
record.

DATA
RE ORD

PROGRAM
RECORDS

CONTROL
STATEMENT

RECORD

b
7
8
9

~
I--

~ I/j'J -
~-

7
8
9

1.'1' END

---rr==- - -~
1DEN:r CCC ~

f [NUBB

- 1
-fir=- - - ~~AI , IDENT BBB dl -
~ END AAA

(b- ~ , IDENT AAA

'III

~:FlLE1'
REWIND{LGFILE1}

COPYBR{LGFILE2,PUNCHB}

COPYBR{LGFILE1,PUNCHB}
REWIND{LGFILE2}

REWIND{LGFILE1}
COMPASS{B=LGFILE2}

COMPASS{B=LGFILE1}
CHARGE{S9,b91NS}

USER{ABC,PASS,FAMA}
r-

PROGB{TSOO,CMbSOOO}
i-

-
-

-
r-

..

1
SUBPROGRAM

SUBPROGRAM

-

-
I-

-

1
PROGRAM
RECORD

PROGRAM
RECORD

I

Figure 1-3-3. COMPASS Assemble, Execute, and Punch Binary Deck

60435400 C 1-3-3

I

I

I

I

Figures 1-3-4 and 1-3- 5 illustrate examples of FORTRAN source decks used for
computation and user output.

1-3-4

T
DATA

RECORD

PROGRAM
RECORD

CONTROL
STATEMENT

l

b
7
8
9

~ -
/~ ,

7
8
9

~- -
11.- •..
'/#--

~PROGRAM ABC{INPUT,OUTPUT}

7
8
9

V FTN{GO} -
.CHARGE{S9,b91NS}

USE~{NA.M , P_ASS.:W F AJ:JAr

FTNJOB{T1000}

~
~I
I:ill '" E:--- DATA DECK

~ I
ilill I~ E "-- SOURCE DECK

~

l-

I-

~

Figure 1-3-4. FORTRAN Compile and Execute Deck

60435400 C

60435400 C

T
DATA

RECORD

PROGRAM
RECORDS

CONTROL
STATEMENT

RECORD

b
7
8
9

-
IS1

II ,
7
8
9

-
~

---G'
1M
~I ,.

7
8
9

rl
L-....4I

/8/

~PROGRAM RQZ{INPUT,OUTPUT,
TAPE1,TAPES,TAPEb}

~L
LOAD{INPUT}

FTN.
REQUEST{TAPE1,HI,X}

REQUEST{TAPE5,HY}

REQUEST{TAPE6,HY}
CHARGE{S9,b91NS}

USER{NAM,PASS,FAMA}

RUNJOB{T400,CMS5000}

~
IIII I~ E

~
II;
1111 ~~ E

~
Ilil
III - E

I-

I-

I-

I-

~

-
I-

Figure 1-3-5. FORTRAN Load and Run Deck

DATA DECK

BINARY DECK

SOURCE DECK

I

1-3-5

I

I
I

I

JOB INITIATION

When a job enters the system, the system determines the job orIgIn type. The job
origin type identifies the means by which the job is entered into the system. It is
also used to identify the job while it remains in the system. The job origin type is
used by the system to control job activity and to aid in directing the job through the
system. It also determines the way the job exits from the system.

Jobs are initiated by:

• Reading a card deck in through a card reader, either from a local or a re­
mote batch reader.

• Logging into a time-sharing terminal.

• Using the available load utilities (refer to the LDI control statement, section 6).

•

•

Using the SUBMIT control statement from a job already in the system (refer. to
the SUBMIT control statement, section 6).

Using the ROUTE control statement from a job already in the system (refer
to the ROUTE control statement, section 7).

The first two methods of initiation set the job origin type to indicate the method by
which the jobs are entered. When using the SUBMIT or ROUTE control statement, a
parameter is entered with the command specifying the origin type.

JOB ORIGIN TYPES

If the job originates from the system console, the job is assigned system orlgln type
(SYOT). If the job is a time-sharing job and enters through the time-sharing executive,
it is given time-sharing origin type (TXOT). If the job enters the system through the
local card reader, it is a batch origin type (BCOT) job. A job coming into the system
from remote batch is entered into the system by the Export/Import package or the
Remote Batch Facility (RBF) package and is assigned Export/Import origin type (EIOT).

If validated, a user can submit jobs to the system using the SUBMIT or ROUTE con­
trol statements. The user can also specify origin types that are different from his
own.

JOB NAMES

After entering the system, the job is assigned a unique job name to prevent job name
duplication within the system. This job name is a combination of parameters that
describe the job; the first seven characters are the system-assigned job name; the
eighth character indicates the job origin type. This job name precedes all messages
issued to the system dayfile for that job. These messages include normal operating
messages, error messages,. and accounting information issued by the system.

SYSTEM ORIGIN TYPE (SYOT) JOB NAME FORMAT

The first four characters of a system job name are obtained from the job name entered
or are zero-filled if fewer than four characters are entered. The next three characters
are a unique system sequence number in the range from AAA to 999. The eighth char­
acter is an S. For example, if the job entered is DIS. a possible job name is
DISOAABS.

1-3-6 60435400 C

BATCH ORIGIN TYPE (BCOT) JOB NAME FORMAT

The first four characters of a batch origin job name are generated from the user index
associated with the user number supplied on the USER. control statement. These four
characters are unique to the user. The next three characters are the job sequence I
number. The eighth character of a batch origin job name is B.

TIME.SHARING AND EXPORT IIMPORT (TXOT AND EIOT) JOB NAME FORMAT

The first four characters of these job names are generated from the user index asso­
ciated with the user number supplied by the user when logging into the system. The
next three characters represent the number of the terminal on which the user is logged
in for TXOT or the system sequence number for EIOT. The eighth character is T for
time-sharing origin jobs and E for remote batch jobs.

All jobs entered via a SUBMIT or ROUTE control statement derive the first four char- I
acters of their job names from the job's current user index in the same manner as
EIOT and TXOT jobs. The last three digits are the system sequence number with the
eighth character being either E or B, as described previously, depending on the I
parameters supplied with the SUBMIT or ROUTE statement.

VALIDATION

The USER statement follows the job statement and is used to validate the user' as a
legal user (refer to USER statement, section 6). If the user is validated, a set of con­
trol values is set in the control point area; these values are used by the system to con­
trol all system requests. In most cases, if the user is not permitted to perform
specific functions (such as access nonallocatable devices), his job is aborted and the
message

ILLEGAL USER ACCESS.

is issued when the illegal function is attempted.

To determine the extent of his validation, the user can issue the LIMITS command and
receive a listing of his current validation control values. Refer to the LIMITS control
statement in section 6 for an explanation of these values. For further information or
to change his validation, the user should contact installation per sonne!.

Each user number has a unique user index associated with it. Once a user number is
validated, the user index is set in the control point area. The system uses this index
to determine on which permanent file device (and where) the user's permanent files re­
side. (Refer to part IV of the installation handbook for an explanation of the user index.)

ACCOUNTING

The unit of accounting for the system is the system resource unit (SRU).. The SRU is
a composite value of central processor time, I/O activity, and memory usage. SRU
operations are initiated at the beginning of a job and reinitiated whenever another
CHARGE control statement is encountered. SRU information includes:

• Central processor time

• Mass storage activity

• Magnetic tape activity

• Permanent file activity

60435400 C 1-3-7

• SRU value

• Application account charges t
This information is written to the user's dayfile at the end of the job or whenever a
CHARGE statement is processed. The user may request SRU information to be written

I to his output file at any time during his job by issuing the ENQUIRE or SUMMARY con­
troL statement. The format of SRU information written in the dayfile is given under
Job Completion in this section.

JOB SCHEDULING

When a job enters the system. it is placed in the input queue on mass storage. where
it waits for the required system resources to become available. The job is assign~d
an input queue priori~y depending on its origin. The system priorities are system-de­
fined and can be altered only by the system operator. The job queue priority 'is
advanced as the job waits in the queue. The priority ages to a system-defined limit.
The job scheduler periodically scans the queues and active jobs to determine whether
action is neces,sary to ensure that the highest priority jobs are being serviced. This
action may include rolling out low priority jobs or rolling in higher priQrity jobs. The
job scheduler is also activated to analyze the system status whenever the status of the
system changes (for example. when the field length of a job is released. a job enters
a queue. or a job completes). Because of this automatic scheduling and analysis of
system status changes. a user can increase system performance by releasing memory
when all of the assigned memory is not required.

Once a job is brought to a control point, normal control statement processing begins. The
general flow of the control statement processing is illustrated in figure 1-5-1.

JOB CONTROL

I While a job is at the control point. the system exercises the following controls over
the job.

FIELD LENGTH CONTROL

Before the system begins to process a job step (control statement), it establishes the
initial field length for that step from the first one of the following that applies.

1. The field length requirement is specified by RFL= and MFL= special entry
points. This is true of several system routines (refer to appendix F, volume
2).

2. The routine contains the field length required in a loader table (54 table).

3. An initial running field length (RFL) has been specified with an RFL control
statement or a SETRFL macro call.

4. Either the maximum field length (MFL) for the job step or the system default
(50000B) is chosen,· depending on which is the smaller.

t Not cur.rently supported by the system but reserved for future use.

1-3-8 60435400 C

The maximum field length for a job (MAXFL) is the smallest of the following values.

• The field length specified on the job statement

• The maximum field length for which the user is validated

• The maximum field length available to the user for processing of this particular
job (machine size)

For each job step. there is an MFL. which cannot be exceeded during processing of
that step. MFL may be reset between job steps with the MFL control statement;
however. MFL cannot exceed MAXFL. the maximum field length for the job.

Assuming no other overriding information (RFL= or MFL= entry points or 5~ ~oader
table). the system begins a job step with the initial running field length (RFL) as set
by a previous RFL control statement or SETRFL macro call. RFL may not exceed
MFL. the upper bound for the particular job step. After processing of the job step
has begun. additional field length may be acquired with the MEMORY macro call; how­
ever. the field length cannot be increased above MFL.

The levels of maximum field length may be summarized with the formula

RFL~ MFL~ MAXFL

which states that the initial running field length cannot exceed the maximum field length
for a job step which cannot exceed the maximum field length for a job.

The flow of processing to determine field length for each job step is shown in figure
1-3-6.

Examples of field length control:

-Control Statement Field Length

JOB(CM60000. T1000) 700

USER(USERABC. 1234567. FAM1) 700

RFL(50000) 400

ATTACH(OPL=OPLX) 1600

60435400 C

. Comments

MAXFL and MFL are both set to
60000. RFL is set to O. indi­
cating system control of FL.
Field length is set to 700 to
allow ACCFAM to run.

ACCFAM. which processes the
USER control statement. has an
RFL= special entry point.

The RFL control statement sets
RFL at 50000. indicating an
initial running field length for
job steps with no other over­
riding considerations. The field
length is set to 400. because
the utility that sets the running
field length (CONTROL) has an
R FL= special entry point.

Field length is set to 1600.
because the utility that attaches
files (PFILES) has an RFL=
special entry point.

1-3 -9 •

• 1-3-10

READ NEXT
CONTROL

STATEMENT

SET FIELD LENGTH
TO MFL

SET FIELD LENGTH
~"---"'" TO VALUE SPECI­

FIED BY ENTRY
POINT ROUTINE

SET FIELD LENGTH
.......... _~ TO VALUE SPECI­

SET FIELD LENGTH
TO 500008

FIED IN 54 LOAD­
ER TABLE

JOB STEP BEGINS
WITH RFL. ADDI­
TIONAL FIELD
LENGTH HAY BE
ACQUIRED DURING
PROCESSING

8f---~i ABORT THE JOB

Figure 1-3-6. Field Length Control Processing

60435400 C

Control Statement Field Length

MODIFY(L=O, Z) I~:~EDIT, FORT 36600

FTN(I) 50000

LGO. 15000

FTN(I=TAPE1) 50000

REWIND(TAPE1, COMPILE) 1000

SA VE(LGO=BIN) 1600

MFL(40000) 400

RFL(30000) 400

LffiEDIT(P=O, N, V) 30000

60435400 C

Comments

Modify increments in 2000-word
blocks to the table size required
to complete the Modify operation.

FTN has a pseudo MFL= entry I
point supplied through the FL
directive of SYSEDIT. This has
a value of 42000. The 50000 from
the last RFL statement is the
larger value and is us ed.

The loader automatically reduces
the job field length after perform­
ing a relocatable load. (RFL = is
not pr es ent in LGO.) The loader
requires a field length of 30200 to
load itself. It increments in
4000 word blocks until·the required
table space is available.

FTN has a ps eudo MFL = entry
point supplied through the FL
directive of SYSEDIT. This has
a value of·42000. The 50000 from
the last RFL statement is the
larger value and is us ed.

The system sets the field length
because REWIND utility has
RFL= set. (FILES is the utility
package.)

The SAVE utility also has RFL=
set. (PFILES is the utility
package.)

MFL is reset to 40000. No fol­
lowing job step can exceed this
value of MFL. The MFL con­
trol statement is also processed
by CONTROL. RFL is cleared.

RFL is set to 30000.

Because LIBEDIT has no RFL=
specified, the system restores
the field length to the running
field before processing LIBEDIT.

1-3-11

I

I

INPUT FILE CONTROL

All user jobs, when initiated, have a file named INPUT. This file contains the control
statements and other input records required for job execution. INPUT is a locked file.
As a result, the user may read from it and reposition it, but the system does not
allow him to write on it. If for some special reason the user needs to write on
INPUT, he should first issue a RETURN(INPUT) control statement (refer to section 7).
This statement changes the name of the file from INPUT to INPUT~:~ and leaves it
attached to the user's job. The change of name on RETURN applies only if the input
file is of type INFT.

TIME LIMIT CONTROL

The system sets a time limit for each job step unless the job statement specifies a job
step time limit. This time is the amount of central processor time that anyone job
step is allowed. The maximum time allowable on the job statement is 777708 seconds.
Any job in the system with a time limit of 777718 through 777778 seconds has an in­
finite amount of central processing time at its disposal. If the user wants to change a
job's time limit, the SETTL control statement or macro is used. The user cannot,
however, increase the limit beyond that for which he is validated.

While a job is using the central processor, the time of usage is accumulated and
checked against the time limit for each job step. If the job is not a time-sharing
(TXOT) job, the job in execution is aborted when the time limit is reached. Time­
sharing origin jobs are rolled out, after which the user can increment the time limit
and resume execution from the point where the time limit was exceeded. Refer to the
Time-Sharing User's Reference Manual for a more detailed description.

SRU LIMIT CONTROL

The system sets a limit on the number of system resource units (SRU) that a job step
or an account block can accumulate. An SRU includes central processor time, central
memory usage, permanent file activity, and mass storage and tape I/O. An account
block is that portion of a job from one CHARGE statement to the end of the job or the
appearance of another CHARGE statement. The user may alter these limits through
the SETJSL and SETASL control statements or macros; however, he may not set either
limit beyond that for which he is validated.

While a job is in the system, SRU usage is accumulated and checked against the SRU
job step and account block limits. If the job is not a time-sharing job (TXOT), the
job is aborted when either limit is reached. Time -sharing jobs are rolled out. After
a time-sharing job is rolled out, the user can increment the limit and resume execu­
tion from the point where the limit was reached. (Refer to the Time-Sharing User's
Reference Manual for more details.)

1-3-12 60435400 C

ROLLOUT CONTROL

Each ex-ecuting program is allowed to reside in eM for a certain amount of time before
relinquishing its space to another program. When this CM time slice is exceeded,
the program may be rolled out. This means that the contents of the- job field length,
the job control area, and the control registers (exchange package) are written to mass
storage. The program remains on mass storage until it is rolled back into memory.
Execution resumes from the point where rollout occurred. The amount of time the job
is allowed to occupy eM is called the central memory time slice. The central memory
time slice is a system parameter that can be changed only by the system operator.
The time slices vary for each origin type. Whether a job is rolled out when its time
slice expires depends on several factors.

• Whether there are jobs waiting in the input and rollout queues

• Whether the jobs that are waiting have a lower priority

• Whether jobs that· are waiting require more· field length than would be available
if all jobs of lower priority were rolled out

When a job is rolled out, it is assigned a queue priority. The priority assigned is a
system parameter and can be changed only by the system operator. The queue priori­
ties can vary for each origin type. The queue priority is aged (incremented) while the
job is in the rollout queue. Normally, all other factors being equal, the job with the
highest queue priority is selected to be rolled in.

ERROR CONTROL

The exit mode feature allows the programmer to select conditions that permit the sys­
tem to discontinue normal processing when errors occur. The error conditions and
associated condition codes that can occur are:

• Illegal instruction (00)

• Address is out of range (01)

• Operand is out of range (02)

• Indefinite operand (04)

• ECS flag register operation
parity error (10)t

The CPU attempted to execute an illegal or
nonavailable instruction ..

One of the following conditions has occurred.

The program attempted to reference
CM memory or ECS outside the
established limits.

The program is attempting to branch
to an address outside the user's
field length.

Floating-point arithmetic unit received an
infinite operand.

Floating-point arithmetic unit attempted to
use an indefinite operand.

Parity error was detected on ECS flag register
operation.

t Applicable to CDC CYBER 170 series only.

60435400 C 1-3-13 I

• CMC input error (20) t

• CM data error (40) t

The address or data sent by the CPU had
incorrect parity at the central memory control
(CMC) or CM~

Double data error (two data bits failed) be­
tween the CMC and CM, detected by the
single-error correction double-error detection
(SECDED) network, or a data parity error
between the CMC and CM when operating in
default mode (in other words, the SECDED
network has been disabled).

The user can select any combination of these conditions with the MODE control statement
(refer to section 6). If one of these errors occurs and the proper mode for that
error is selected, the system notes the error by setting the appropriate error flag
and exiting from normal processing. The following dayfile error message occurs
defining the error exit conditions.

CPU ERROR EXIT xx AT yyyyyy.

This message identifies the error condition by the condition code xx (as listed above)
that was detected at location yyyyyy. If the exit mode is not selected, the central
processor stops or proceeds depending on the situation. For a detailed explanation,
refer to the appropriate hardware reference manuals.

When activity at a control point ceases, the system determines the reason. If an
error flag is set, the error is noted and execution is resumed at the error exit
address if one was specified. Error exit addresses are set by the EREXIT macro
(refer to section 6, volume 2).

Once control is transferred, the error flag is cleared. If the error occurs because
the central processor time limit is exceeded, the job is given another 108 seconds' to
complete processing. If the error is caused by a central processor abort (refer to
ABORT macro), the address at which the error occurred is specified and normal
error processing continues.

When control is transferred from an executing program because of an error, the sys­
tem determines whether or not to continue with control statement processing. perform
error processing, or terminate the job.

The system first searches for an EXIT control statement. If an EXIT statement is found,
error processing begins with the statement following EXIT. If, prior to the detection of
the error, the system encountered a NOEXIT statement, no search is made for an EXIT
statement and processing continues with the next control statement. If no EXIT or NOEXIT
statement was encountered, the system terminates the job.

t Applicable to CDC CYBER 170 series only.

I 1-3-14 60435400 C

SECURITY CONTROL

Unless the job is system origin type or the user is validated for system origin
privileges and DEBUG mode has been set at the system display console, system
security imposes the following restrictions on control statements which dump any por­
tion of the field length of the previous job step.

• They may not follow the execution of certain protected system programs (refer to
section 2, volume 2 for further definition).

• They may not follow user programs which have requested protection (refer to the
description of the SETSSM macro, section 6, volume 2).

Violation of these restrictions results in the control statement being ignored and the
following informative message being entered in the dayfile.

SECURE MEMORY, DUMP DISABLED.

The following are the restricted control statements.

CATALOG LIBEDIT
CKP LOC
COPYB PBC
COPYC RBR
DMD VERIFY
DMP VFYLIB
EDIT WBR
LBC RESTART

JOB COMPLETION

When there is no more activity at a control point, no outstanding central processor requests,
and no control statements to process, the job is completed in the following manner.

1. All CM assigned to the job is returned to the system.

2. All equipment assigned to the job is returned to the system.

3. All library files attached to the job are returned; other jobs can then access
them.

4. All scratch (local) file space used by the job is released.

5. All direct access permanent files attached to the job are returned; the status
information for these files is updated.

60435400 C 1-3-15

6. The following sunlmations of job activity are added to the end of the user's dayfile.
This information is also issued to the associated account dayfile. The entries in
the account dayfile also include the job name.

• Application charge activity in kilounits:

hh. mm. SSe UEAD~ xxxxxx. xxxKUNS.

• Permanent file activity in kilounits:

hh. mm. SSe UEPF, xxxxxx. xxxKUNS.

• Mass storage activity in kilounits:

hh. mm. SSe UEMS, xxxxxx. xxxKUNS.

• Magnetic tape activity in kilounits:

hh. mm. SSe UEMT, xxxxxx. xxxKUNS.

• Accumulated central processor time in seconds:

hh. mm. SSe UECP ~ xxxxxx. xxxSECS.

• SRU value in units for total job usage including CPU time, I/o activity,
and memory usage:

hh. mm. SSe AESR, xxxxxx. xxxUNTS.

• Lines printed in kilolines:

hh. mm. SSe UCLP, es, xxxxxx. xxxKLNS.

es EST ordinal of the fil~

The following information is issued to the account dayfile only:

• Cards read in kilocards:

hh. mm. SSe jobname. UCCR. es. xxxxxx. xxxKCDS.

• Cards punched in kilocards:

hh. mm. SSe jobname. ucpe. eSt xxxxxx. xxxKCDS.

7. Control point dayfile is copied to the end of the print file.

8. All output files are released to the output queue.

9. The control point area is cleared for the next job.

• 1-3-16 60435400 C

CONTROL LAN-GUAGE 4

The operating system control language allows the programmer to transfer control and
to perform arithmetic and test functions within the control statement record. Control
language consists of statements similar to FORTRAN statements. These statements
are normally composed of a command (as listed below), parameters, symbolic names,
and expressions. The following are legal commands.

GOTO

CALL

DISPLAY

SET

IF

An important feature of control language is the capability to create procedure files. A
procedure file is a group of system control statements and / or control language state­
ments which can be called much like a subroutine for insertion anywhere within the
control statement record. It is activated either by -the CALL statement or the name of
the procedure file. Because control statements, control language statements, or both
are allowed in a procedure file, the user is given a much wider range of control for
manipulating his files.

The following sections describe the various components and commands of the system
control language.

EXPRESSIONS
The expressions allowed are similar to FORTRAN expressions and may contain con­
stants, arithmetic operators, relational operators, Boolean operators, functions, -and
symbolic names.

CONSTANTS

Numeric constants are assumed to be decimal. If a constant has a postradix of D, it
is decimal. If it has a postradix of B, it is octal.

ARITHMETIC OPERATORS

Arithmetic operations are performed in ones complement with 48-bit evaluations. The
arithmetic operators processed are:

+ Addition

Subtraction

M ultiplic ation

I Division

** • Exponentiation

60435400 B 1-4-1

Leading -

Leading +

Negation

Ignored

RELATIONAL OPERATORS

Relational operations produce the value 1 if the relation is true and a value of 0 if the
relation is false. The relational operators are (either form may be used):

= .EQ. Equal to

I .NE. Not equal to

< • LT. Less than

> .GT. Greater than

< • LE. Less than or equal to

> .GE. Greater than or equal to

BOOLEAN OPERATORS

The Boolean operators are (either form may be used):

- .EQV. Equivalence

V • OR. Inclusive OR

A • AND. AND

l • EOR. Exclusive OR

----. • NOT. Complement

FUNCTIONS

Two functions are provided for use in expressions specified with control language state-'
ments. The FILE function determines the status of any file assigned to the job. The
NUM function determines if a specified parameter name has a numeric value. .For
complete information concerning format and use. refer to Control Language Functions
in this section.

SYMBOLIC NAMES

Symbolic names are used to reference values pertaining to the job process. There
are three categories of symbolic names. as follows:

• Symbolic names with fixed arithmetic values:

ARE Arithmetic error

BCO Local batch origin

1-4-2 60435400 B

CPE CPU abort

EIO Remote batch (Export/Import) origin

FLE File limit error

MNE Monitor call error

ODE Operator drop

PEE CPU_parity error exit

PPE PPU abort

PSE Program stop error

SRE .SRU limit error

SYO System origin

TKE Track limit error

TLE Time limit error

TXO Time-sharing origin

• Symbolic names with variable arithmetic values which depend upon job state:

EF Previous error flag

EM Current exit mode

FL

OT

R1

R2

R3

SS

Job field length

Job origin type

Contents of control register 1

Contents of control register 2

Contents of control register 3

Job sUbsystem; in expressions, SS may be equivalenced to one
of the following.

ACCESSt

BASIC

BATCH

EXECUTE

FTNTS

NULL

TRANACTt

• Symbolic names 'with Boolean values:

F False value

FALSE

SWn

T

TRUE

False value

Setting (1=on, O=off) to sense switch (1 =:;n =:;.6)

True value

True value

tSpecial validation is necessary to access and use ACCESS and TRANACT. Refer to the
LIMITS statement, section 6.

60435400 C 1-4-3

I

EVALUATION Of EXPRESSIONS

The order of evaluation of expressions is:

1. Exponen tiation

2. Mlltiplic ation, di vis ion

3. Addition, subtraction, negation

4. Relations -

5. Complement

6. AND

7. Inclusive OR

8. Exclusive OR, equivalence

Nesting of expressions to any depth is allowed within a statement.

CONTROL LANGUAGE STATEMENTS

Control language statements are described in the following paragraphs. Separa'tors
and terminators must be used as shown in the statement formats.

GOTO STATEMENT

The GOTO st8;tement transfers control to another location within the control statement file.

The statement format is:

GOTO,stmt.

stmt

1-4-4

Name of any control statement or a digit (0 through 9) followed
by a maximum of six alphanumeric characters, terminated by
a period.

Example 1 Example 2

•

GOTO.1WX2. REQUEST (TAPE 1)

GOTO. REQUEST.

1WX2.REQUEST(TAPE1)

REQUEST(T APE2)

60435400 B

When stmt appears more than once in the control statement file. the stmt to be executed is
the first occurrence of stmt from the beginning of the control statement file. Hence. in
both of the previous examples. the REQUEST (TAPEl) statement is processed after the
GOTO statement.

CALL STATEMENT

The CALL statement allows the user to insert a file consisting of a group of control state­
ments (procedure file) at the specified position in the control statement stream. This file
is merged, as specified on the CALL statement, with the current control statement record
into a third record. This third record becomes the current control statement record. The
remainder of the input file is then copied to the new control statement record. If the C
option is exercised, the current control statement record is not used. Only the source file
is used to generate a new control statement record. All options are order-independent.

The statement format is:

or

CALL(lfn.C. S=ccc. RENAME (oldnaml =newnam p oldnam2=newnam2 •••••
oldnam =newnam)

n n

CALL(lfn. C. S=ccc(oldnaml =newnam l • oldnam2=newnam2 ••••• oldnamn =newnamn)

lfn

C

S=ccc

RENAME

oldnam.
1

Procedure file name (refer to the description of procedure files
in this section for further information). The system obtains lfn
by:

1. Searching for a local file. lfn

20 Searching the system library for lfn

3. Attempting to retrieve a working copy of an indirect
access file

Replaces all of the control statement record after the CALL I
statement with lfn.

Sets next control statement to be processed to statement ccc.
If S is not specified. the first statement in lfn is processed.

Each occurrence of oldnam. is replaced with newnam. before
the statement is entered inlo the statement file. As ~hown by
the optional format. the word RENAME does not have to appear.

Old name; name of a file or statement label used in the
specified procedure file

New name; name to replace oldnam.
1

60435400 C 1-4-5

DISPLAY STATEMENT

'The DISPLAY statement determines the current subsystem or evaluates an expression
and displays the result in the dayfile. Numeric results are displayed in both octal
and decimal formats. Expression evaluation is significant only to 23 bits. 'Therefore,
the octal representation of a negative number may be incorrect.

'The statement format is:

DISPLAY(SS)

or

DISPLAY (expression)

expression

Example 1:

DISPLAY (SS)

Any legal expression

If the BASIC subsystem is currently in use, the preceding statement inserts the follow­
ing message into the dayfile:

BASIC

Example 2:

DISPLAY«Rl+ R3) ~:~ R2)

If R1=5, R2=8, and R3=3, this statement inserts the following data in the dayfile.

64 100B

Both decimal and octal values are displayed.

SET STATEMENT

'The SE'T statement allows the user to specify a subsystem or to set software registers
to control the flow of a job. 'These registers are useful when designing a multipurpose
procedure file. 'They also can be used to select a particular option in the procedure
file. 'These software-defined registers are kept in the job control area and are pre­
served for the duration of the job. The control register specified in the control state­
ment is set to the value of the expression supplied. 'This register can be R1, R2, R3,
or EF (refer to Symbolic Names earlier in this section). 'The R registers are 18-bit
quantities whereas the error flag (EF) is a 6-bit quantity. Excess bits are ignored.

The statement format is:

SET(Ri=expression)

or

SET(EF=expression)

or

SET(SS=ssname)

Ri

1-4-6

EF
expression
ssname

Software-defined register 1, 2, or 3
An additional register
Any legal expression
Any legal SS subsystem name

60435400 A

Example:

This example illustrates the use of the SET statement to control execution of an object pro­
gram. Because register Rl is set to 1 when file ABC is called, the object program is not
executed.

SET(Rl=l)
CALL(ABC)
FTN.
IF(Rl=l) GOTO, 3.
REQUEST(TAPEI)
LGO.
3, REWIND(TAPEI)

IF STATEMENT

The IF statement is used to evaluate an expression. If the conditions given in the expression
are true, the dependent statement is processed. The expression is considered true if it is
evaluated to a nonzero numeric value.

The statement format is:

IF(expression)stmt.

or

IF(SS op ssname)stmt.

or

IF(SS op ssname expression) stmt.

expression
stmt
op

ssname

Example 1:

Any legal expression
Any legal control statement
One of the operators:

.EQ.
1
• NE.

Any legal SS subsystem name

IF(R2 =Rl. AND. R3)GOTO, REQUEST.
SET(EF=I)

.
REQUEST(TAPE)

If the expression is true, the ·REQUEST control statement is executed; otherwise, the SET
statement is executed.

60435400 B 1-4-7

Example .2:

IF(SS.EQ.BAsrc.AND.OT=TXO.AND. Rl=l)GOTO, 100.
SET(SS. EQ. BASIC)

100, OLD, BAS.

If the statement is true, the OLD control statement is processed; otherwise, the SET state­
ment is processed.

CONTROL LANGUAGE FUNCTIONS

Control language functions are described in the following paragraphs. Separators and
terminators must be used as shown in the function formats.

FILE FUNCTION

The FILE function is used to determine the status of any file assigned to the job and
is used in conjunction with the SET, IF, and DISPLAY control language statements.

The format of the function is:

FILE(lfn, expression)

lfn

expression

F.ile name

Any legal expression; however, FILE expressions cannot
include functions. In addition, FILE expressions use
different symbolic names, as follows:

Symbolic names:

Names with values
EQ Equipment status table (EST) ordinal t

(0 through 778)
ID File ID (0 through 678)

Names with true/false values
MS File is on mass storage
LK File is locked
OP File is opened
EX Execute-only file
AS File is assigned to user's control point

File types
LO
PR
IN
PH
LI
PM
PT

Local
Print
Input
Punch
Library
Direct access permanent file
Primary

t Contact installation personnel for a list of EST ordinals.

1-4-8 60435400 B

Device types
CP 415 Card Punch
CR 405 Card Reader
DE Extended Core Storage
D1 844-21 Disk Storage Subsystem
DJ 844 -:41/44 Disk Storage Subsystem I
OP Distributive Data Path to ECS
LP 512 or 580 Line Printer
LQ 512 Line Printer
LR 580-12 Line Printer
LS 580-16 Line Printer I
LT 580-20 Line Printer
MD 841 Multiple Disk Drive
MS Mass Storage
MT Magnetic Tape Drive (7 -track)
NE Null equipme'nt
NT Magnetic Tape Drive (g'-track) I
TT Time -Sharing Multiplexer
NP Host Communications Processor

Examples:

SET(R 1=F1LE(TAPE, MT»

If TAPE is a fUe on a 7-track Magnetic Tape Drive, R1 is set to 1; otherwis~, it is
set to zero.

1F(F1LE(BETA, MD. AND. PM))GOTO, 200.

If BETA is a fUe on an 841 Multiple Disk Drive and it is a direct-access permanent
fUe, processing goes to the statement at 200.

HUM FUNCTION

The NUM function is used to determine if the specified parameter name has a numeric
value. It is used in conjunction with the SET, IF, and DISPLAY control language state­
ments.

The format of the function is:

NUM(name)

name Parameter name. If the name is numeric, the statement is -,
true; otherwise, it is false.

Example:

If the following CALL statement was used to call procedure file A

CALL(A, RENAME(2XY=2, T=TAPE»

the IF statement in A

1F(NUM(2XY»GOTO,1S.

would be evaluated as true, and control would transfer to 1S.

60435400 C 1-4-9

However, the statement

IF(NUM(T))GOTO, IS.

would be evaluated as false, and control would pass to the next statement in A.

PROCEDURE FILES

Procedure files are source files consisting of control statements, co nt.r ol language state­
ments, or both. The first statement of a procedure file may be the file name. If the
first statement is the same as the file name used in the CALL statement, the first
statement is ignored. Procedure files are activated by the CALL statement or by using
the name of the procedure file, if the file is in the system.

Example 1:

The procedure file in this example is an indirect access file called COMPARE. This
routine copies an input file and compares it with an existing direct access file. In the
procedure file, these two files are called DUPL and MASTER. When the procedure
file is inserted into the control statement record during job processing, the name of
DUPL is changed to NEW FILE •

Original Input File

JOBAAA.
USER(EFD2501. PASS)
CHARGE(59.69N1)
CALL(COMPARE(DUPL=NEWFILE)
-EOR- ..

input file
that is to
be compared

-EOI-

Procedure File COMPARE

COMPARE
COPBR(, DUPL)
A TTACH(MASTER)
VFYLIB(MASTER, DUPL}

1-4-10 60435400 C

After the CALL control statement is processed, the control statement record is as
follows:

JOBAAA.
USER (EFD2501, PASS)
CHARGE(59,69Nl)
CALL(COMPARE(DUPL=NEWFILE»
COPYBR(, NEWFILE)
ATTACH(MASTER)
VFYLIB(MASTER, NEWFILE)
-EOR-

Example 2:

This is an example of nested calls. It illustrates the use of one procedure file to
skip a specified number of files on a tape (contents of R1) and to copy source data to
the tape. The other procedure file retrieves source data from the OPL (old program
library) and calls the first procedure file to place that source data on the tape.

Input Deck

JOBAAA.
USER(USERNUM, PASSWRD, FAM1)
CHARGE(59,69N1)
ATTACH(OPL/UN=LIBRARY)
REQUEST(TAPE)
MODIFY(S, Z) /*EDIT, CPM
SET(R1=0)
CALL(PROC, RENAME(A=TAPE, B=SOURCE, 2=2A, 3=3A).
SET(R1 =R1+ 1)
CALL(PROB)
-EOR-

Procedure File PROB

PROB
MODIFY(S=NEW, Z)/~~EDIT, MTR
CALL(PROC,RENAME(A=TAPE, B=NEW)
RETURN, NEW.

Procedure File PROC

PROC
REWIND(A, B)
SET(R2=0)
2,IF(R1=R2)GOTO,3.
SKIPF(A)
SET(R2=R2+1)
GOTO,2.
3, COPYBF, B, A.

I NOTE I
On job initiation, the user's input file is a locked file.
If th.e user wishes to call procedure files that write
data on the input file, he should enter the RETURN
(INPUT) control statement before attempting to write on
INPUT. For further information, refer to Input File
Control, section 3.

60435400 C 1-4-11

I
I

TIME-SHARING COMMANDS

The following commands are intended for use only by time-sharing origin jobs but in­
cluded here for their use in procedure files. For additional information about these
commands. refer to the Time-Sharing User's Reference Manual.

ASCII STATEMENT

The ASCII control statement specifies that all subsequent operations are to be done in
ASCII character set mode. -

The control statement format is:

ASCII.

If this control statement is processed while output is still available. the terminal
switches to ASCII mode for the remainder of the output.

CSET STATEMENT

The CSET control statement specifies the current character set mode of the terminal.

The control statement format is:

CSET(m)

m Current terminal character set mode; m may be one of the following.

ASCII Set ASCII character set mode; escape code processing
is enabled

NORMAL Set normal character set mode; escape code processing
is disabled

If this control statement is processed while output is still available. the terminal
switches to the new character set mode for the remainder of the output.

PARITY STATEMENT

The PARITY control statement sets the terminal to the indicated parity.

The control statement format is:

PARITY(p)

p Terminal parity; p may be one of the following.

ODD Set odd parity
EVEN Set even parity

If P is omitted. odd parity is assumed.

If this control statement is processed while output is still available. the terminal parity
switches to the new parity for the remainder of the output.

1-4-12 60435400 A

CONTROL STATEMENT PROCESSING 5

Jobs entering the system consist of one or more logical records. The first logical record
contains system directives (control statements) which describe the processing that is to
occur in the job file (job deck). This section describes control statement processing and
how the control statements affect other aspects of job processing.

The operating system recognizes three types of control ,statements.

• Local File Control Statements

• System Control Statements

• Product Set Control Statements

CONTROL STATEMENT FORMAT

These statements call files that are assigned
to the job control point. LGO is the system
default local file used for retaining object
code generated by one of the language proc­
essors described in section 11.

These statements are divided into eight
categories.

Job control control statements

File management control statements

Permanent file control statements

Load and dump central memory utility
control statements

Tape management control statements

Program library utility control statements

System utility control statements

Loader control control statements t

The product set control statements call the
various products available under NOS (refer
to section 11).

All control statelnents may consist of from one to four fields. The first field is the state­
m(~nt label field. If prese~lt (the field is optional), it begins with a numeric character and
terminates with a separator character. The field is used only in conjunction with the
systenl control language described in section 4.

The second field, also optional, is a $ or / prefix character which precedes the program
name. If a $ is present, it indicates that the specified program to be executed must be loaded
from the system library. t Therefore, even if a local file of the same name is present, it
will not be executed. The / option may be used on local file control statement calls. If a /
is present, it indicates that the parameters following the program name are to be processed in
the operating system format. If a / is not present, the parameters are processed in product
set format. The default is product set format because it is assumed that most programs spe­
cified in local file calls have been generated by one of the product set members. The / option
does not apply for control statement calls to programs residing on the system library. For
those types of calls, parameters are processed in the operating system format unless the SC
directive to SYSEDIT has been entered. Refer to the SYSEDIT control statement in the
installation handbook for a description of the SC directive.

t Refer to the CDC CYBER Loader Reference Manual.

60435400 B 1-5-1

I

I

I

I

The third field contains the name of the program to be executed. The fourth field (optional)
contains parameters which further define the operation to be performed. The parameter
field is set off from the name field by a separator character. After the fourth field or the
third field if no parameters are present, there must be a valid terminator character.

The following is a comparison of the operating system and product set formats (refer
to section 11 for a list of control statements processed in product set format).

Operating System Format

1. Valid separators are

+_"/=,(

and any other character with a display
code value greater than 448 except
~:<)$. and blank.

2. Valid terminators are

.)
3. Letters, numbers, and the

~:< are the only characters
allowed in the parameter
field. The one exception to
this rule is the use of lit­
erals (that is, character
strings delimited by dollar
signs). Characters other
than letters. numbers, and
the ~:< can be included in lit­
erals. No characters within
a literal have special mean­
ings; the system merely checks
the syntax of the literal.
The called program must do its
own processing of the literal.

Literals are allowed only on
equipment/ file assignment
control statements and control
statements for loader control.

4. All embedded blanks within a
control statement except those
appearing in literals are
ignored.

5. Comments may appear on the
control statement but they must
follow the terminator. They
may contain any character.
Comments are not printed for
some control statements.

1-5-2

Product Set FtPrmat

1. Valid separators are

+ - " / = , (

and any other character with a display
code value greater than 448 except
~~) $ • and blank.

2. Valid terminators are

.)
3. Any parameter field that includes

characters other than letters, num­
bers, and the .~~ must be expressed
as a literal.

4. All embedded blanks within a control
statement except those appearing in
literals or after the program name
are ignored.

5. Same as for the operating system
format.

60435400 C

Operating System Format

6. Parameters, separators,
and terminators are stored
in the us er 's field length
beginning at RA+2. The
characters, • and) are stored
as zero. For all parameters
and all valid separators except
the comma, their display code
equivalent is stored.

7. File names. are 1 to 7 alpha­
numeric characters.

8. Not NOS/BE compatible

Product Set Format

6. Parameters are stored in their display
code equivalent beginning at RA +2.
Separators and terminators are stored
as follows:

Character

•

/

+

or •

Other valid
separators

Code {Octal}

1

2

3

4

5

6

10

17
16

7. File names are 1 to 7 alphanumeric
characters. File names beginning
with a numeric character are illegal.

8. NOS/BE compatible

In general, no parameter can contain more than 7 characters. If a parameter contains
more than 7 characters, the entire control statement is issued to the dayfile, followed
by the message:

FORMAT ERROR ON CONTROL CARD.

There are two exceptions to this rule. If a statement caUsa program from the system
library that has an ARG= entry point, parameters in the statement can contain more
than 7 characters. If a parameter contains more than 7 characters, the ARG= entry
point is not present, and the SDM= entry point is present, the statement name (such as
DEFINE) is issued to the dayfile but all parameters are suppressed.

The parameters can appear in either order-dependent or order-independent format. Order­
dependent parameters are required when the parameters must be passed in a specific order.
An example of order-dependent parameters is:

RESEQ(MYFILE, B, ,20)

In this example, the system. expects the resequencing increment to be passed as' the
fourth parameter; therefore, a separator must be present for the parameter not speci­
fied.

Order-independent parameters may be passed in any order. This is made possible by the
use of keywords. Keywords· are identifiers which have meaning either by themselves or
when used ~n conjunction with other parameters. Usually. keywords are passed with a
parameter and a separator. The separator must not be a comma. When the list of param­
eters is. passed to the called program, all separators except commas are also passed.

60435400 C 1-5-3

I

I

I

I

I

Some programs require specific separators (usually =). and others merely require that a
separator be present. Examples of keyword notation are:

1. COBOL(I=SFILE. B=BFILE)

2. COBOL(B=BFILE. I=SFILE)

3. COBOL(L=O. A, F)

4. JOBX. TI0. CM45000.

In examples 1 'and 2. both parameters and separators are passed to the COBOL com­
piler. Since these parameters are order-independent. both statements produce the
same result.

In example 3. two keywords are passed with no separator character or parameter. In
example 4. the keyword is the first character of the parameter.

The control statements are processed in the rollowing manner: parameters are extracted
from the control statement and stored in the user'~ field length beginning at ARGR (RA+2)
through RA+n (n cannot exceed 638). t The total number of parameters stored in the user's
field length is placed in the lower 18 bits of RA+648. The name of the control statement is
placed in bits 18 through 59 of RA+648.

The control statement image, less any label or prefix field, is stored at RA+70 8• If the pro­
gram being executed was loaded from the system library and has an ARG= entry point, then
the entire control statement image will be present at RA+708• Neither the information on
arguments nor the argument count, however. will be entered when A RG= is present. This
entry point allows for control statements with special parameter requirements (refer to
appendix F, volume 2).

An example of how the control statement

PERMIT. (FILEABC, USERAAA=R, USERBBB=W)

appears in CM is illustrated.

ARGR

ACTR
CCDR

RA+2

RA+6

RA+64
RA+7o

RA+73

0611
2523
2200
2523
2700

2005
0501
0101
0202

1405
0522
0000
0522
0000

2215
0203
5422
5427

Memory

"
0102
0101
0000
0202
0000

1124
0025
5625
5755

0300
0100
0000
0200
0000

5606
2305
2305
0000

\
0000
0054
0000
0054
0000

1114
2201
2202
0000

Display Code
Equivalent

" I
FILEABC
USERAAA
R
USERBBB
W

PERMIT (FIL
EABC USERA
AA=R,USERB
BB=W)

The following control statements would provide exactly the same image in CM.

123. PERMIT (FILEABC, USERAAA=R, USERBBB=W)

123. $PERMIT (FILEABC. USERAAA=R, USERBBB=W)

JOB STATEMENT FORMAT

The first statement of the control statement record is always the job statement. The job
statement may be in either order-dependent or. order-independent format. When the job
statement is in order-independent format, the keyword and parameter are passed with no
separator character. The format for the job statement is:

I t The first 1008 words of the user's field length, from RA through RA +778. comprise
the job communication area. Refer to appendix E, volume 2 for a description of
this area.

1-5-4 60435400 C

jobname(Tt, CMfl, Pp). cm

jobname(p, t, fl). cm

jobname

fl

p

60435400 C

Alphanumeric job name (1 to 7 characters) which must begin
with a letter. This name identifies individual jobs being run
under the same user number.

Central processor job step time limit in octal seconds,
ranging from 1 to 77770S' The time limit must be suffi­
cient for completion of each job step in the job. If t is
absent, the system assumes t equals 100S (100S seconds is
approximately 1 minute).

Maximum CM field length (storage requirement) for the job.
The system rounds the value to the next highest multiple of
100S• The field length cannot exceed:

377, 700S on a 19SK or a 262K machine

360, OOOS on a 131K machine

163, OOOS on a 65K machine

61, OOOS on a 32K machine

I NOTE I
The following messages are issued to the user's
dayfile if validation limits are exceeded.

CM NOT VALIDATED. The number of CM words
specified on the job state­
ment exceeds that for
which the user is validated.

TL NOT VALIDATED. The time limit specified
on the job statement
exceeds that for which
the user is validated.

The user may be further restricted by limits placed on him
by the validation file or by installation parameters. The
user should consult installation personnel for restrictions
based on the machine configuration and subsystems used.

In addition, RFL (the running field length for a job step)
will always be zero unless the user specifies a field length
with the RFL control statement (refer to section 6). When­
ever RFL is zero, the system is in control of field length
assignment. The MFL (maximum field length) control state­
ment will clear any RFL value previously set with an RFL
control statement (refer to section 6).

Priority level (octal) at which the job enters the system;
1 .:5 P.:5 17 S·

This parameter is' currently ignored since the system will
automatically assign priorities specified by the installation
parameters.

1-5-5

I

I

I

I

cm Conversion mode contained in columns 79 and 80. A 26
indicates coded cards are to be converted in 026 mode; 29 in­
dicates cards are converted in 029 mode. This is the initial
keypunch mode of the job but mode may be changed by a con­
version change card (refer to Coded Cards, appendix F) when
reading cards or a DISPOSE statement when punching cards. If
this parameter is omitted, the system default keypunch mode is
used.

In addition to the regular separator characters, the ,~ may also be used to separate param­
eters on the job statement.

If the order-dependent format is employed and null parameters are indicated with multiple
separators, the null parameters are interpreted as zeros.

Example:

JOBAAA, , , 50000.

has the same effect as

JOBAAA, 0, 0, 50000. or JOBAAA, PO, TO, CM50000.

CONTROL STATEMENT PROCESSING FLOW

The system translates a control statement by:

1. Reading the statement from the control point control statement buffer. If necessary,
the system reads control statements from the job input file.

2. Deleting all spaces between the beginning of the statement and the terminator
character (a period or a right parenthesis). In general, the system allows only
standard FORTRAN characters to appear before the terminator character, although
other characters can appear within a literal or in the comment field.

3. Comparing special control statement names with the name of the control statement
being processed. If the statement name is CTIME, RTIME, or STIME, the system
processes the control statement.

4. Searching the file name table for a file assigned to the job with a name identical to
the name of the control statement. However, if a $ precedes the program name,
this step is skipped. If an identical name is found, the program is loaded into
memory. The arguments are extracted from the control statement and stored in
RA+2 through RA+n+1 (n is the number of parameters). The CPU is requested to
begin execution unless special loader control statements follow.

5. Searching the central library directory for a program name that matches the control
statement name. If the name is found, the system proceeds as in step 4; otherwise,
the system searches further.

6. Searching the peripheral processor library directory for a program name that
matches the control statement name. If found, the name is placed, with a maximum
of two arguments, as a peripheral processor request, and the system exits to the
program.

7. If the control statement name is not found during any of the above searches .. the
control statement is declared illegal and the job is aborted.

1-5-6 60435400 C

Figure 1-5-1 illustrates the flow of control statement processing.

1 PROCESS FIELD
ES LENGlli CONTROL

READ A (SEE SECTION 3)

CONTROL
STATEr-ENT

SEARCH CPU LOAD PROGRAM
LIBRARV F'OR TO CENTRAL

CONTROL STATEr-ENT CONTROL r-EMORY
PROCESSOR SEARCHES STATEr-ENT
ITS LIST OF CONTROL ·NAr-E
STATEr-ENT NAr-ES FOR
SPECIAL CONTROL
STATEr-ENT STORE CONTROL

STATEr-ENT AND
CONTROL STATEr-ENT
ARGUr-ENTS IN
USER'S FIELD

PROCESS LENGTH
SPECIAL
REQ,JEST

SEARCH PP
LIBRARY FOR
NAME, IF NAME
IS LEGAL PP

YES PROGRAM NAr-E

PLACE NAME
YES WITH UP TO lWO

OCTAL ARGUr-ENTS
AS A PP REQ,JEST

YES USE NOS FORMAT
FOR PROCESSING
PARAMETERS

DECLARE
CONTROL
STATEMENT
ILLEGAL

SEARCH FNT
FOR FILE
ASSIGNED TO
THIS JOB

Figure 1-5 .. 1. Control Statement Processing Flow

60435400 A 1-5-7

EXIT PROCESSING

When an error condition occurs during job processing, the system searches the control
statement record for an EXIT statement. If the record does not contain an EXIT state­
ment' the system terminates the job. If the system finds an EXIT statement, it clears
the error condition and processes the control statements that follow the EXIT statement.
If the error was a time limit error, the limit is reset to the time used plus 108 sec­
onds. This gives the user time for post error cleanup operations. If the error was an
SRU limit error, the limit is reset to the SRUs used plus 108 SRUs.

If a NOEXIT statement is encountered, normal error processing is not performed.
That is, if the no exit. flag has been set (by the NOEXIT statement) prior to the error,
the error flag is cleared, no search is made for an EXIT statement, and processing
continues with the next control statement. An ONEXIT statement can be used to return
to error processing mode; it clears the no exit flag. For further discussion of pos­
sible error conditions, refer to section 3 of this manual.

The following sequence of control statements illustrates this exit processing.

JOBCCC.
USER (SMITH22, SM)
CHARGE(55A 19)
NOEXIT.
GET(A,B)
ONEXIT.
ATTACH(MASTER/M=W)
SKIPEI(MASTER)
COPYBF(A, MASTER)
COPYB(B, MASTER)
PACK(MASTER)
COPYSBF(MASTER,)
EXIT.
ENQUIRE(F)
-EOR-
-EOI-

This job gets local copies of two indirect access permanent files and adds them to a
direct access file. The NOEXIT suspends error processing, and the job will continue
even if file A and/or B is not found. The ONEXIT turns error processing back on.
If any error occurs thereafter, processing skips to the EXIT statement and continues
with the ENQUIRE. If no error occurs after the NOEXIT, processing continues until
the EXIT statement and terminates (ENQUIRE is not processed).

• 1-5-8 60435400 C

JOB CONTROL CONTROL STATEMENTS

The job control control statements enable the user to alter information that controls
his job while in the system and to retrieve information concerning the status of his
job. The control statements included in this category are:

ACCOUNT MODE RTIME

CHARGE NOEXIT SETASL

COMMENT NOJtERUN' SETJSL

CTIME OFFSW SETPR

DAYFILE _ ONEXIT SETTL

ENQUIRE ONSW STIME

EXIT PASSWOR SUBMIT

LDI RERUN SUI

LENGTH RESOURC SUMMAR,Y

LIMITS RFL SWITCH

MFL ROLLOUT USECPU

USER

6

I

I

The user muet have specific validation parameters set to use LDI, PASSWOR, SUBMIT, I
or SUI. He can use the remaining statements regardless of his validation. A listing
of validation information can be obtained using the LIMITS statement. Although the user
is allowed to change several control values for his job (such as RFL, SETPR, and
SETTL), he can never specify more than that for which he is validated.

The system uses the USER statement and CHARGE statement for checking user valida­
tion and system accounting information. The RESOURC statement is also used by the
system to prevent deadlocks from occurring wheri several tapes or packs are used
concurrently.

The user- can submit files as batch origin type jobs through the LDI and SUBMIT con- I
trol statements. _ He can specify the mode of error exit processing desired through
use of the EXIT, ONEXIT, NOEXIT, and MODE statements. He can also set conditions
for his program with sense switches (such as ONSW, OFFSW, and SWITCH). In the
event of a system malfunction causing jobs to be recovered, he may either allow his
job to be, run again with the RERUN statement or prevent it from being rerun with the
NORERUN statement. Additional information is returned to the user by the CTIME,
RTIME, and DA YFILE statements. The COMMENT statement allows the user to pro­
vide his own documentation.

60435400 C 1-6-1

I

I

I

ACCOUNT STATEMENT

The ACCOUNT control statement is included for compatibility with previous systems.'
The USER control statement should be used with the present system.

CHARGE STATEMENT

The CHARGE statement causes the system to record on the account dayfile all informa­
tion regarding resources used under a specified charge number/project number combina­
tion. Its purpose is to control the accounting activity of the system for a customer
or the installation.

The control statement format is:

CHARGE(chargenum, projectnum)

chargenum

projectnum

A 1~ to 10-alphanumeric character charge number assigned
to the user

A 1- to 20- alphanumeric character project number assigned
to the user

For added security, the user may issue the CHARGE statement without parameters.
In this case, the system will read the parameters from a record in the INPUT file.
This record must be a single line with the format:

chargenum, projectnum

The CHARGE statement is used in conjunction with user accounting control. An instal­
lation which irrplements this feature can impose limits on the SRUs a user may accumu­
late or restr.ict his access to the system to a certain time-of-day interval.

If access option 8 is not set (refer to LIMITS control statement in this section), the
user must include a CHARGE statement immediately following every USER statement
in his job. If option 8 is set, the user may but is not required to include a CHARGE
statement. A user assigned-more than one charge and/or project number may include
additional CHARGE statements in his job to record resources used under each charge
number/project number combination. Whenever a new CHARGE statement ,is issued,
the SRU information for the previous charge number/project number is written to the
account dayfile and then cleared. However, the other accumulators (central processor
time, mass storage activity, and so on) are not cleared but continue to increment.
The following message is also issued when a new CHARGE statement is entered.

yy. mm. dd. hh. mm. SSe jobname. ACCN, chargenum, projectnum.

For a complete list of messages issued to the user's dayfile, refer to Job Completion,
section 3.

1-6-2 60435400 C

COMMENT STATEMENT
The COMMENT statement is used to enter the specified comment in the system and user's
dayfile.

The control statement format is:

COMMENT. comments or

*comments

comments Any combination of . characters the user wishes to display

If the

*comment

format is used, the ~, must appear in column 1.

CTIME STATEMENT

The CTIME control statement requests that th.e accumulated CPU time for the job be issued
to the user's dayfile (in seconds).

The control statement format is:

CTlME.

DAYFILE STATEMENT

The DAYFILE control statement causes the system to write the ·user's control point
dayfile to the" file specified.

The control statement format is:

DA YFILE(lfn. strng. op. pd. pI)

or

DAYFILE(L=lfn. FR=strng. OP=op. PD=pd. PL=pl)

L=lfn

FR=strng

60435400 C

File on which the dayfile is to be written. If omitted. OUTPUT
is assumed. Pagination will occur if listing file name is OUT­
PUT or if PD or PL is specified.

This parameter specifies the literal string for which a search
is to be made in the dayfile. Unless the literal string is a
valid command or control statement (seven characters or less).
it must be enclosed by $ delimiters. The first character of the
literal string requested must always be the starting position of
the field (for example. the first character of the time field is a
space). The field to be searched is specified by the op param­
eter. The portion of the dayfile from the last occurrence of
the requested literal string to the end of the dayfile is returned I
to the user.

t

I

OP=op

PD=pd

PL=pl

Examples:

Selects search option (single character):

op

T Search time field for matching string
M Search message field for matching string
I Incremental dump (from point of last dump)
F Full dump

If a literal string (strng) is specified and op is omitted. OP=M
is assumed; if both strng and op are omitted. OP=F is assumed.

Print density (3. 4. 6. or 8 lines per inch): if omitted. PD=6
is assumed. .

Selects page size; if omitted. page size is determined from
print density. Page size does not include title lines.

PD Assumed PL

3 30
4 40
6 60
8 80

DA YFILE(TEMP. $ABCDEFG$)

DAYFILE (L=TEMP. FR=$ABCDEFG$. OP=M)

DAYFILE (FR=COMPASS)

ENQUIRE STATEMENT

The ENQUIRE control statement gives information about the system to the user. Three
forms of the command are allowed.

The control statement formats are:

ENQUIRE(OP=PIP2 ••• Pn- IN=jobname. FN=lfnl. O=lfn2)

or

or

ENQUIRE.

Any of the following options.

Description Option

A Gives listings of the B. D. R. U. J. L. and F
options. respectively.

1-6-4 60435400 C

Optlon

B

D

F

J

60435400 C

Description

Returns to the user identification and priority infor­
mation.

Example:

USER NUMBER
USER INDEX HASH
JOB NAl\lE
JOB SEQ. NO.
FAMILY
PACKNAME
PRIMARY FILE
SUB SYSTEM
QUEUE PRIORITY
CPU PRIORITY
MAX FL (CM)
MAX FL (EC)
LASTFL (CM)
LAST FL (EC)

DLH2500
AKQA
AKQAAEF
AAEF
CLS127
~:<NONE ~:<.

~:<NONE~:< •
NULL.
4010
30
203700
o
o
o

Returns a listing of the resources the user has
demanded and those which have been assigned.

Example:

RESOURCE DEMAND INFORMATION.

RESOURCE DEMAND ASSIGNED

MT 2 2

Gives the status of files at the user's control point.

Example:

FILENAME

EXAMP
INPUT
BFILE3
OUTPUT

TOTAL = 4

LENGTH/PRUS

2
3

21
3

TYPE

LO.
IN. ~:<

LO.
PRo

STATUS

EOR READ
EOR READ
EOR READ
r/CWRITE

Returns the contents of the user's control registers,
error flag field. and succeeding control statements.

Example:

JOB CONTROL REGISTERS.

R1 = 32
R2 = 98
R3= 0
EF = 0

CONTROL STATEMENT(S).

GET(ALPHA)
COPYSBF(ALPHA,)
~:<EOR~:<

1-6-5 •

• 1-6-6

Option

L

R

S

T

De scription

Returns user's loader information.

Example:

LOADER INFORMATION.
MAP OPTIONS = SBX
GLOBAL LIBRARY SET IS -

EMPTY.

Returns to the user the amount of resourc es used.
These statistics are factors that make up the SRU.

Example:

RESOURCES USED.

CPU TIME
MS ACTIVITY
MT ACTIVITY
PF ACTIVITY
ADDER
SRU

0.025 SECS.
0.117 KUNS.
0.000 KUNS.
0.010 KUNS.
0.002 KUNS.
2.025 UNTS.

Returns the user's accumulated SRUs. The SRU
represents the total usage of the system by the user.
This unit is derived from central processor' time.
I/O activity. and memory usage.

Example:

SRU ACCUMULATOR.

SRU 2. 030 UNTS.

Returns accumUlated CPU time.

Example:

CPU ACCUMULATOR.

CPU TIME 0.017 SECS.

U . Returns the amount of resources still available to
the user.

Example:

RESOURCE USAGE ALLOWED.

SECONDS
JOB STEP SRU
ACCOUNT BLK SRU
DAYFILE MESSAGES
CONTROL STATMTS
DISPOSE FILES
MASS STORAGE

64
128
640
462
458
4
12586

60435400 C

Option

jobname

Description

Last three characters of the name assigned by the
system to a remote batch job that has been initiated
with the SUBMIT, ROUTE, or LDI statement. When
this parameter is specified, the status of the remote
batch job is returned. If JN (without =jobname) is
specified, the status of all jobs associated with the
current user number that are active in the system
is returned. It is only possible to obtain the status
of jobs submitted under the current user number.

Local fUe name. When this parameter is specified,
th~ status of the particular file is returned in the
same manner as when the F option is specified.

Name of alternate file to receive output. If omitted,
the system assumes OUTPUT.

The third form of the statement (ENQUIRE.) defaults to the OP=A option. All OP=
options (except Sand T) are executed and the information is printed on the OUTPUT
fUe.

EXIT STATEMENT

The EXIT control statement indicates the position in the control statement record where
processing will resume if an error is encountered or where to terminate normal con­
trol statement processing if an error is not encountered. For additional information,
refer to the description of the NOEXIT and O~EXIT control statements later in this
section and to the description of exit processing in section 5.

The control statement format is:

EXIT.

LDI STATEMENT

The LDI routine copies Un to mass storage and submits the job(s) to the input queue
with IDs to identify each job. The -copy begins at the current position of the file
pointer and coniunues until an EOI or double EOF is encountered. The jobs submitted
are gatch origin type jobs.

The control statement format is:

LDI(ifn, id, m)

Un

id

m

60435400 C

Name of file containing the job(s) to be submitted; if Un is
omitted, LOAD is assumed.

Identification code (0 through 678 and 778); if omitted, 0 is
assumed. If an id of 778 is assigned,· the OUTPUT file will
be released at job completion.

Job names of jobs loaded are listed in the dayfile for the
control point; if omitted, the list is suppressed.

1-6-7

I

I

I

I

I

The user can submit only the number of jobs for which he is validated (refer to the
DB field description for the LIMITS control· statement in this section). If this limit is
exceeded, no further jobs are loaded, and the following message is issued to the dayfile.

TOO MANY DEFERRED BATCH JOBS.

If the submitted job contains an illegal USER statement, the job entering the LDI state­
ment is aborted (no exit processing), and the following messages are issued to the
dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT.

In addition, the following message is issued to the account dayfile.

SIUN, usernum.

Terminal users will be immediately logged off with no dayfile message. The security
count for the user number that entered the LDI statement is decremented accordingly.

LENGTH STATEMENT

The LENGTH control statement gives the user the current status of one of his locai files.

The control statement format is:

LENGTH(lfn)

lfn Name of local file

The information given for. the local file includes its length in PRUs,· type, and current
status.

LIMITS 5T A TEMENT
The LIMITS control statement directs the system to list validation information on file OUT-
PUT for the user named on the latest USER statement. .

The control statement format is:

LIMITS.

Generally, validation limits are the internal system controls associated with each user
number which govern his use of certain system resources. The listing provided describes
both the resources available to the user and the extent to which they may be used. All
.numeric values listed are decimal unless the postradix B appears, signifying an octal value.
The following information is listed. .

1-6-8 60435400 C

Field

ABt

MT

RP

TL

CM

NF

DB

FC

CS

FS

PAt

ROt

PXt

TTt
TCt
ISt
MS

DF

CC

OF

CP

LP

Description

Answerback identifier (1 to 10 alphanuJ?eric characters) used for ter­
minal identification

Maximum number of magnetic tape unEs the user is allowed to have as­
signed to his job concurrently

Maximum number of removable auxiliary devices the user is allowed to
have assigned to his job concurrently

Maximum amount of central processor time (cumulative CPU time slices)
in seconds allowed for each job step .of the user's job. TL represents I
the actual time limit divided by lOS

Maximum number of central memory words that the user is allowed to re­
quest. The value stored for CM represents the actual word limit divided
by 100S•

Maximum number of files that the user is allowed to have attached to a
job concurrently

Maximum number of deferred batch jobs that the user can have in the
system concurrently

If the user is validated for system privileges and DEBUG mode is set on
the system display console or if the user is submitting jobs from system
origin, this parameter is ignored. The user is allowed to submit as- many
jobs as desired.

Maximum number of indirect access permanent files the user can have I
in each catalog. This limit applies to each catalog being accessed (main,
public auxiliary, or private auxiliary).

Maximum number ot PRUs available to the user for indirect access files

Maximum number of PRUs available to the user for anyone indirect ac­
cess fiie

Terminal parity (EVEN or ODD)

Specifies the number of rubout characters required for carriage return
delay

FULL or HALF duplex transmission mode

Terminal type

Character set to be used by time-sharing terminal

Initial subsystem for time-sharing terminal

Maximum number of mass storage PRUs the user is allowed to additionally
allocate via his job

Maximum number of MESSAGE requests the user can issue to the system
and/ or job dayfiles

Maximum number of batch control statements processed for a user.
(Time-sharing processed control statements are excluded.)

Maximum number of print and punch files the user can dispose to output
queues

Maximum number of cards that can be punched from a user's
punch file

Maximum number of lines that can be printed from a user's
print file

I
t For further information about this field, refer to the Time-Sharing User's Reference

Manual.

60435400 C 1-6-9

I

I

Field

ECt

SL.

CN

PN

DS

AW

Description

Maximum number of ECS memory words that the user is allowed to re­
quest

Maximum number of SRUs the user is allowed for a job

Charge number to which the user is assigned

Project number to which the user is assigned

Maximum number of PRUs available to the user for anyone direct access
permanent file

Access word; controls the user's access within the system according to
the following options (assumed values are options 1, 3, and 4).

Option Specifies

1 User can change his password.

2

3

4

5

6

7

8

9

10

11

12

13

User can use the privileged time-sharing commands. t t

User is allowed to create direct access files.

User is allowed to create indirect access files.

User can have system origin (SYOT) capability from any job
origin if the system console is in DEBUG mode.

The user is allowed to assign a device by its EST,ordinal
although the system need not be in DEBUG mode to do so.

The user is allowed to call the customer engineering PPU­
based diagnostics if ENGINEERING mode (ENGR) is set at
the system console.

User can access/ create library files.

User can assign nonallocatable devices. A nonallocatable
device is a magnetic tape unit, card reader, card punch,
or line printer. Refer to File Management Control State­
ments in section 7 for further information.

User is allowed to access the system without supplying his
assigned charge and project numbers.

User can define, save, and replace files on auxiliary devices.

User can access special transaction functions.

Allows no terminal timeout.

User has special accounting privileges. t t t

Allows use of the system control point (SCP) facility.

The octal value listed for AW corresponds to the preceding options where
bit 0 is option 1, bit 1 is option 2, and so on. For example, if the access
word listed were: .

AW-:!:00000000000000000215

the user would be validated for options 1, 3, 4, and 8.

tNot currently used by the system but provided for future expansion of validation control.
t t For further information about privileged time-sharing commands, refer to the operator's

guide.

I tt tRefer to part IV, section 1 of the NOS Installation Handbook for a description of
special user's accounting privileges.

1-6-10 60435400 C

The LIMITS statement is equivalent to the OP=! option of MOnV AL. If. any parameters are
included on the LIMITS statement, the system issues the following message to the user's
dayfile.

ERROR IN LIMITS ARGUMENTS.

MFL STATEMENT

The MFL control statement resets the maximum field length for a job step. The control
statement format is:

MFL(nnnnnn)

nnnnnn Field length (octal)

The parameter nnnnnn sets an upper bound for the field length of subsequent job steps. The
value cannot exceed the maximum field length for the job nor can it be less than the field
length required by the utility (CONTROL) that processes MFL. The field length required by
CONTROL is 400B.

The MFL control statement clears any initial running field length previously established with
the RFL control statement or the SETRFL macro and allows the system to determi~e the
field length for each succeeding job step. The system will continue to determine field lengths
until another RFL control statement or SETRFL macro is encountered.

MODE STATEMENT

The control statement format is:

MODE(m, n)

m

nt
CPU program error exit mode (0~m~7)

CPU hardware error exit mode (0~n~7) •

t Applicable to CDC CYBER 170 series only.

60435400 C 1-6-11 •

The following values can be supplied for m.

m CPU Program Error Exit Mode

o
1

2

3

4

5

6

7

Disable program exit mode; no selection made

Address out· of. range because:

• Attempt was. made to reference CM or ECS out.,
side established limits, or

• Attempt was made to reference last 60- bit word
(word 7) in relative address FL of ECS.

Operand out of. range; floating~point arithmetic unit re­
ceived an. infinite operand

Address or operand out of range

Indefinite operand; floating-point arithmetic unit received
an indefinite operand

Indefinite operand or address out of range

Indefinite oper~nd or operand out of range

Indefinite operand, operand out of range, or address out
of range. If no mode is selected, the system assumes
m=7.

The following values can be supplied for n.

o
1

2

3

4

5

6

7

CPU Hardware Error Exit Mode

Disable hardware exit mode; no· selection made

ECS flag register operation parity error

CMC input error

ECS flag register operation parity error or CMC input
error

CM data error

ECS flag register operation parity error or CM data
error

CMC input error or CM data error

ECS flag register operation parity error, CMC input
error or CM data error. If no n mode is selected, the
system assumes n=7. .

It is recommended that the user always specify n=7. If any hardware exits occur, he
should contact a customer engineer or on-site analyst.

The MODE statement is used to define the error conditions that cause the system to exit
from normal processing. When the specified error occurs, the system sets. the appro­
priate error flag and exits from normal processing to perform any error processing
required. If an error occurs for which the exit mode is not selected, the system
notes the error, skips the operation that is caus ing the error, and continues normal
processing. Note that if exit mode 3, 5, 6, or 7 is specified, a combination of exit
modes 1, 2, and 4 is actually selected. For example, if exit mode 5 is specified, an
error exit will occur for either a mode 1 or mode 4 error condition. Refer to· Error
Control, section 3 and to the CDC CYBER 170, CYBER 70, and 6000 Serie.s Computer
Systems Reference Manuals for further information about the processing of mode errors.

I 1-6-12
60435400 C

NOEXIT STATEMENT

The NO EXIT control statement suppresses the transfer of control to the statement following
the next EXIT statement if an error occurs.

The control statement format is:

NOEXIT.

If a NOEXIT statement has appeared in the control statement record and an error
occurs, processing continues with the next control statement, if possible (that is, if
error does not cause job to abort). Refer to the description of exit processing in
section 5 for further information.

NORERUNSTATEMENT

The NORERUN control statement allows a user to clear job rerun status.

The control statement format is:

NORERUN.

If the NORERUN statement has been issued, the job may not be rerun. This may be
desirable to prevent updating of an important data base when the job would otherwise
be rerun.

This statement is ignored from a time -sharing origin job.

OFFSW ST ATEMEN1

The OFFSW control statement clears the pseudo-sense switches for reference by the user's
program.

The control statement format is:

OFFSW(s l' s2' ... , sn)

s· 1
Sense switch to be cleared; 1<.si<6. If si=O is specified,
all sense switches are cleared: -

The system stores the sense switch settings in the user's control point area and copies
them to RA for use by the central program. The system operator can change these
settings by console command.

ONEXIT 51 A1EMEN1

The ONEXIT control statement causes the transfer of control to the statement following the
next EXIT statement if an error occurs.

The control statement format is:

ONEXIT.

The ONEXIT statement reverses the effect of a NOEXIT statement. If an error occurs
in processing a statement following ON EXIT , control transfers to the statement follow­
ing the next EXIT statement. Refer to the description of exit processing in section 5
for further information.

60435400 C 1-6-13 I

I

ONSW STATEMENT

The ONSW control statement sets the pseudo-sense switches for reference by the user's
program.

The control statement format is:

ONSW(sl' s2' ••• , sn)

Sense switch to be set; 1<si<6. If si=O is specified, all
sense switches are set. - -

The system stores the sense switch settings in the control point area and copies them
to RA for use by the central program. The system operator can change these settings
by console command.

PASSWOR STATEMENT

The PASSWOR control statement is used to change the user's password.

The control statement format is:

PASSWOR(oldpswd, newpswd)

oldpswd

newpswd

Old pas sword

New password

For added security, the user may issue the PASSWOR statement without parameters. In this
case, the system will read the parameters from a record in the INPUT file. This record
must be a single line with the format:

oldpswd, newpswd

The user's password is changed from oldpswd to newpswd. The user can change his
password only if access option 1 is set (refer to the LIMITS control statement in this
section). If option 1 is not set and the user submits a PASSWOR statement, the system
issues the following message to his dayfile.

ILLEGAL CONTROL CARD.

If the control statement parameters are in error, the system issues the following message.

ERROR IN PASSWOR ARGUMENTS.

If the installation is currently updating the validation file or another user is modifying
his password, a nontime-sharing origin job is rolled out until the validation file is
available. A time-sharing origin PASSWOR command will be aborted with the message:

MODVAL ABORTED.

If this situation is encountered, the time-sharing user should be able to retry his
password change within a short time.

RERUN STATEMENT

The RERUN control statement allows a user to set job rerun status.

The control statement format is:

RERUN.

If the RERUN statement has been issued, the job may be rerun. This statement is
ignored from a time-sharing origin job.

1-6 -14 60435400 C

RESOURC STATEMENT
The RESOURC control statement is necessary in any job .that uses more than one tape or
pack co~current1y in order to prevent deadlocks with other jobs which may need the
same resources.

The control statement format is:

RESOURC(rt1 =u1' rt2 =u2' • • • , rtn = un)

rt. Resource type:
1

u.
1

MT Magnetic Tape Unit (7-track)

NT
DIi

DJi

Magnetic Tape Unit (9-track)

844-21 Disk Storage Subsystem (1~i~8)

844-41/44 Disk Storage Subsystem (1~ i~ 8)

MDi 841 Multiple Disk Drive (1~i58)

Maximum number of units of resource type rti this job will
use concurrently; any rti =ui entry can be changed on sub­
sequent RESOURC control statements.

The system manages the use of tape units and disk packs in such a way as to prevent
deadlocks from occurring. A deadlock would occur if the system, by assigning a tape
unit or pack to one job, prevented another job with currently assigned resources from
completing. For example, an installation with two tape units is process ing jobs A
and B. Each job needs both units during some phase of processing. Job A is assigned
unit 1. If job B were assigned unit 2, neither A nor B could complete until the other
job relinquished its assigned unit.

The system prevents such situations by requiring that a RESOURC control statement be
included in any job that uses more than one tape or pack concurrently. When a job
that includes a RESOURC statement is submitted, the system first checks if the specified
number of units exceeds the number of units for which the user is validated t or the
number of units available at the installation. If either of these situations occurs, the
system issues an error message to the user's dayfile and aborts the job.

When the job requests a tape or pack, it the system compares the number of units that
jobs being processed have scheduled via RESOURC statements with the number of units
actually assigned. If it determines that the assignment would cause a deadlock, it rolls
out the job until a deadlock would not occur. If the assignment would not cause a dead­
lock, the system searches for the requested tape or pack. If found, it is assigned to
the requesting job. If the pack is not found and the NA keyword was included in the
request or if the tape is not found, the requesting job is rolled out until the operator
makes the pack or tape available.

Thus, in the previous example, a RESOURC statement would be required in both jobs.
The information supplied by the statements would enable the system to anticipate the
deadlock situation and roll out job B until job A no longer needed both units.

t For jobs that use only one tape or pack at a time and do not contain a RESOURC
statement, the system checks validation limits when the request is made.

it Refer to Permanent File Control Statements, section 8 for a description of disk pack
requests and to Tape Management Control Statements, section 10 for a description of
tape requests.

60435400 C 1-6-15

I

I

Under certain conditions the system overcommits resources, provided all jobs with
currently assigned resources can complete. For example, an installation with three
tape units is processing jobs A and B. Included in each job is a RESOURC statement
scheduling two units. Job A requests its first tape. It is assigned the tape (unit 1)
because there are enough units available for job A to complete. Job B requests its
first tape. It is assigned the tape (unit 2) because either A or B can complete if
assigned the last unit, c...nd when the job that is assigned the last unit completes, the
other can then use that unit and also complete. Job B then requests and is assigned
its second tape (unit 3). It completes its operations (that is, terminates or returns
the files on the tape) and makes the unit available for job A to complete.

The system manages resources by keeping totals of the number of scheduled units and
assigned units. Each total can vary during job processing. A user can increase the
number of scheduled units by returning all files attached to his job residing on re­
source unit,s not currently needed and then scheduling the required number of units
with another RESOURC statement. He can decrease the number of scheduled units by
including RETURN statements or additional RESOURC statements.

In the following job, for example, the second RESOURC statement increases the number of
scheduled disk drives and decr~ases the number of scheduled tape units.

SAMSJOB(CM50000, T40)

USER(SJGREEN, WGT,ALTFAM)

CHARGE(D593)

RESOURC(NT=2)

RESOURC(MD1=2. NT=1)

-EOI-

At some time during this phase of "processing.
the job will require two 9-track tape units.

During this phase. the job will require two 841
Multiple Disk Drives and one 9-track tape unit.
The NT=1 entry decreases the number of scheduled
tape units from two to one.

If the user decreases the total to less than the number of currently assigned units or
increases the total to a point where a deadlock would occur. the system issues an
error message to the user"ls dayfile and aborts his job.

1-6-16

I NOTE I

In a multimainframe environ­
ment, only the configuration
of the machine on which the
job is processed is consid­
ered in the overcommitment
algorithm.

60435400 C

The method of assigning units depends on the resource type. For example_ all tapes
and all private disk packs not accessible by alterna~e users can only be assigned to
one job at a time. All public packs and those priv.:\.'e packs accessible by alternate
users are sharable_ and therefore_ can be assigned to 'Several jobs at the same time.

On indirect access file requests the pack is charged to the job in fulfilling its resource
demand only if the request causes the pack to be mounted. For direct access file re­
quests_ the pack is charged to the job when the first ATTACH of a direct access file
is made.

A unit is assigned to a job until the job terminates or all direct access files residing
on the unit that are assigned to the job are returned. At this point a tape or a non­
sharable pack can be dismounted. A sharable pack, however_ can be dismounted only
when there are no files residing on the unit· that are assigned to any of the jobs sharing
the pack.

I NOTe I
In GET requests for indirect access files_ a pack is
assigned to a job only as long as the pack is actually
being used (that is_ until the system retrieves the local
copy of the file). Therefore_ during a series of GET
requests. the operator may determine that the pack is
not being used and dismount it. If the user has a direct
access file on the pack_ he can avoid this situation by
attaching the direct access file before issuing the GET
requests.

A single job cannot have more than 36 removable pack devices attached to the job
concurrently.

RFL STATEMENT

The RFL control statement sets the initial running field length for a job step when neither I
the routine for processing that step nor a loader table specifies a field length.

The control statement format is:

RFL(nnnnnn)

nnnnnn Field length (unless decimal is specified_ octal is assumed)

If the field length is specified in decimal (number contains an 8 or 9 or has a post­
radix of D)_ it is converted to octal and rounded up to the nearest 100

8
• The value of

nnnnnn cannot exceed the value specified on the last MFL control statement or the
maximum allowed for the job.

Prior to the appearance of the RFL control statement (or SETRFL macro). the syst~m
determines the field length for each job step, provided no field length is specified by a
system routine or loader table (refer to Job Control, section 3).

60435400 C 1-6 -17

ROLLOUT STATEMENT

The ROLLOUT control statement requests that the user's job be rolled out and all memory
assigned to the job released.

The control statement format is:

ROLLOUT.

The user's job is entered into the rollout queue and is rescheduled by the system.

RTIME STATEMENT

The RTIME control statement requests that the time be read from the real-time clock
and issued to the dayfile (in seconds). This is the accumulated time since the last
system deadstart.

The control statement format is:

RTIME.

SETASL STATEMENT

The SETASL control statement allows the user to specify a new account block SRU limit.

The control statement format is:

SETASL(s)

s Account block SRU limit in units (maximum is 777778,
which is infinite)

The account block SRU limit is the number of SRUs that may be accumulated by the job
before the system issues the error message:

ACCOUNT BLOCK LIMIT.

Each us er and charge /project number is validated for a maximum SRU limit. If the
user attempts to set the account block SRU limit above this limit, the following mes­
s age is issued.

SL NOT VALIDATED.

If 1~ s~ 777778 is not satisfied, the following message is issued.

ILLEGAL USER ACCESS.

The parameter s represents the maximum SRU accumulation between CHARGE statements
or between one CHARGE statement and the end of the job. If a CHARGE statement is not
required, s represents the maximum SRU accumulation from the USER statement to the
end of the job.

The user may not set the account block SRU limit to a value less than the current job step
SRU limit. An attempt to do so will result in the message: -

JOB STEP EXCEEDS ACCOUNT BLOCK.

• 1-6-18 60435400 C

SETCORE STATEMENT

The SETCORE control statement presets each word within the field length.

The control statement format is:

SETCORE(p)

or

SETCORE(-p)

p Any of the following: (If a minus sign precedes the parameter p,
the complement of p is set in core.)

.-e..
o
ZERO

INDEF

INF

Fill Characters

o
Zeros (0)

Indefinite (1777 0000 0000 0000 0000)

Infinite (3777 0000 0000 0000 0000)·

Each word within the field length is set to p •. If p is omitted, the system assumes
p=O.

SETJSL STATEMENT

The SETJSL control statement a~lows the user to specify the job step SHU limit for each
remaining step of his job.

The control statement format is:

SETJSL(s)

s Job step SR U limit in units (maximum is
777778, which is infinite)

The job step SRU limit is the number of SRUs that may be accumulated by a single job
step before the system issues the error message:

JOB STEP LIMIT.

The job step SRU limit may not exceed the account block SRU limit (the number of
SRUs which. may be accumulated by the job). If this is attempted.. the following message
is issued.

JOB STEP EXCEEDS ACCOUNT BLOCK.

If 1~ s~ 777778 is not satisfied.. the following message is issued.

ILLEGAL USER ACCESS.

60435400 C 1-6-19 •

SETPR STATEMENT

The SETPR control statement allows the user to specify.a new CPU priority for his job.

The control statement format is:

SETPR(p)

p Priority, l<p< 708; if p exceeds that for which the user
is validated;· it is reduced to that value.

The CPU priority controls the assignment of the CPU to active jobs. If the CPU
priority is lower than that of other jobs, the job is assigned to the CPU only when
jobs of a higher priority do not need it. The user is validated for a maximum CPU
priority. He cannot request a level that exceeds this value or 708 (the maximum
CPU priority).

SETTL STATEMENT
The SETTL control statement allows the user to specify a new CPU time limit for

I subsequent job steps.

The control statement format is:

SETTL(t)

t Central processor job step time limit in octal seconds
(maximum is 777778); t is accurate to the nearest second.
If an 8 or 9 appears in the specification, it is interpreted
as decimal.

The CPU time limit is the amount of time (in seconds) that a job step is allowed to use
the CPU before the error message

TIME LIMIT.

is issued by the system.

I
The user is validated for a maximum job step time limit. If this is exceeded or
1~ t~ 777778 is not satisfied, the following message is issued.

TL NOT VALIDATED.

If t is between 777708 and 777778, the time limit is infinite. The user cannot set a
time limit greater than that for which he is validated.

SliME STATEMENT

'The STIME control statement requests that the accumulated SRU value for the job be
issued to the user's dayfile.

The control statement format is:

S'TIME.

1-6-20 60435400 C

SUBMIT STATEMENT

The control statement format is:

SUBMIT(lfn, q, NR)c

lfn

q

NR

c

Name of the file to be submitted to the system for
processing as a batch job

Specifies disposition of job output as follows:

B Job output is disposed to local batch queue to be
printed and/ or punched at the central site (default
value for nontime-sharing origin jobs)

N Job output is disposed to local batch queue, put
is dropped at job termination (default value for
time-sharing origin jobs)

E Job output is disposed to Export/Import queue for
printing at a remote batch terminal

No rewind option; inhibits rewind of file specified by re­
formatting directive cREAD. If omitted, file specified by
cREAD directive is automatically rewound.

Escape character used to identify reformatting directives
in the file to be submitted (lfn). If omitted, the system
assumes c= / •

The submit file Un contains a batch job submitted to the system for processing. The
reformatting directives described in this section are provided to aid the user in pre­
paring the submit file. When the SUBMIT statement is processed, the submit file can be
reformatted Recording to the directives that appear in the file.

The number of jobs that the user can have in the system concurrently is dependent on
the individual validation limit (refer to the DB field of the LIMITS control statement in
this section). If this limit is exceeded, the following message is issued to his dayfile.

TOO MANY DEFERRED BATCH JOBS.

Each line in the submit file preceded by an escape character is recognized by the
system as a reformatting directive. . The escape character to be used must be specified
on the SUBMIT statement (/ by default). Throughout this description, the letter c,
preceding a directive, denotes the escape character. Reformatting directives may be
interspersed throughout the submit file as long as transparent mode is not in effect.
Transparent mode is selected by the cTRANS directive and requires that the user
observe special rules when inserting subsequent directives into the file (refer to
description of cTRANS and cNOTRANS directives).

The system does not process reformatting directives unless the first line of the submit
file contains the cJOB directive. In addition, the first two statements following the
cJOB directive (second and third statements of the submit file) must be a job and
USER statement, respectively. All following information is determined by the user. Thus,
the first three lines of a subro it file that is to be reformatted before process ing should be

In1 cJOB

In2 jobname, .•.

In3 USER, ...

where ln1, In2, and In3 are optional line numbers.

60435400 C 1-6 -21

I

I

The SEQ and NOSEQ directives are used to determine, during reformatting, if the submit
file will contain leading line numbers. Therefore, it is a simple matter to include line
numbers on the entire submit file and specify which line numbers are to be removed
during reformatting. This is especially useful if the submit file contains a BASIC program
where line numbers are a requirement of the language.

The reformatting directives available are described as follows:

cJOB

cEOR

cEOF

cSEQ

cNOSEQ

cPACK

cNOPACK

cTRANS

1-6 -22

Indicates that the submit file is to be reformatted and
selects the following default reformatting directives. The
default directives remain in effect until specified otherwise.

cNOTRANS (disabled by cTRANS)

cSEQ (disabled by cNOSEQ)

cPACK (disabled by cNOPACK)

The cJOB directive must be the first line of the submit file.
If omitted, the file is not reformatted.

Indicates that an end-of-record mark is to be placed at
this point in the submit file during reformatting.

Indicates that an end-of-file mark is to be placed at this
point in the submit file during reformatting.

Indicates that the following lines are preceded by line
numbers and requests that they be removed (default value).

Reverses the effect of the cSEQ directive. No attempt is
made to remove leading line numbers from subsequent lines.

Requests that all succeeding end-of-record and end-of-file
marks be removed (default value). This directive applies
only to internal EOR and EOF marks that currently exist.
The cEOR and cEOF reformatting directives are not affected.

Reverses the effect of the cPACK directive. Requests the
system not to discard succeeding internal end-of-record and
end-of-file marks that currently exist.

Indicates transparent mode. When the system encounters this
directive, it checks the next line of the submit file for an
additional directive. If one exists, it is [processed and the
next line is checked. This continues until a line that is not
a reformatting directive is encountered. Transparent mode
is then selected and all directives that exist on subsequent
lines are ignored until an internal EOR or EOF is encountered
(this pertains only to EOR and EOF marks that currently
exist, not cEOR and cEOF directives). The cPACK and
cNOPACK directives determine if the internal EOR or EOF
mark will be retained. The line following the internal EOR
or EOF mark is then checked for a reformatting directive.
If one exists, it is processed and the following line is checked.
All directives are processed until a line that does not con-
tain a reformatting directive is encountered. This causes
transparent mode to be reset unless a cNOTRANS directive
was encountered. This process continues until either the end
of the submit file is reached or until a cNOTRANS· directive
following an internal EOR or EOF is encountered.

60435400 C

cNOTRANS

cREAD, lfn

60435400 C

The cTRANS directive is typically used in conjunction with·
the cREAD directive. It allows the user to copy the contents
of an existing file into the- submit file at the location of the
cREAD directive. Because the file is read in transparent
mode, no check for reformatting directives is attempted until
an internal EOR or EOF is encountered. Note that the cREAD
directive must follow the cTRANS directive and must be located
before the first succeeding line that is not a reformatting di­
rective. If not, transparent mode is selected before the cREAD
directive is encountered and the cREAD will be ignored.

The cSEQ or cNOSEQ directive in effect before transparent
mode was selected has no effect upon the submit file or the
file being read (cREAD) while transparent mode is in effect.
Note, however, that the cPACK or cNOPACK directive in
effect before transparent mode was selected remains in effect
after it is selected.

Reverses the effect of the cTRANS directive and informs the
system that the submit file is to be examined on a line-by-line
basis. All directives encountered in the submit file while the
cNOTRANS directive is in effect will be processed. This
directive is initially selected by default and remains in effect
until a cTRANS directive is encountered in the submit file.

The user should be careful in placing this directive in the
submit file. If transparent mode is selected, this directive
can possibly be ignored unless it immediately follows either
a cR~AD directive in the submit file or an internal EOR or
EOF mark.

Requests that the system read the entire contents of the
specified file, lfn, and insert that file in place of the cREAD
directive in the submit file, during reformatting. If the file
to be read is not currently local to the job, . the system
automatically attempts a GET and then an ATTACH on the
file. If lfn is not specified in the directive, TAPEl is
assumed. If the file specified cannot be found, the message

NO READ FILE - Un.

is issued to the user's dayfile, and the job is terminated.
If the read file is found to be busy (direct access files only),
the message

READ FILE BUSY - lfn.

is issued to the user's dayfile, and the job is terminated. The
file specified by Un in the cREAD directive is automatically
rewound before the read operation unless the NR parameter is
specified on the SUBMIT control statement. In this case, the
rewind directive must precede the cREAD directive in the sub­
mit file if it is desired to rewind file lfn before the read opera­
tion begins. The system returns all files specified in cREAD
directives before completion of the job.

If the cPACK directive is in effect at the time of the read,
all internal EaR and EOF marks will be removed. If the
cNOPACK directive is in effect, all internal EaR and EOF
marks are read into the submit file in the proper position
during reformatting.

1-6-23 I

I

cREWIND, lfn

Unless transparent mode is in effect when file lfn is read,
each line of that file will also be checked for a reformatting
directive. Any directives. contained in the file, except an­
other cREAD, will be processed. The cREAD directive cannot
be nested. In addition, any directives in effect ,before the
cREAD directive is processed will remain in effect for the
file being read, unless transparent mode is selected. Then,
only the cPACK or cNOPACK directive remains in effect for
the file being read. Moreover, only those directives that
immediately follow an internal EOR or EOF in the file being
read will be processed.

If the file to be read is a binary file, it is recommended
that the cTRANS directive be used. This is to ensure that
binary data will not be mistaken for a reformatting directive.
The cTRANS directive should immediately precede the cREAD
directive in the submit file, if used.

Requests that the system rewind file lfn to the beginning-of-
. information (BO!). If lfn is not supplied, TAPE1 is assumed.
This directive is required only if the NR parameter is in­
cluded in the SUBMIT command. Otherwise, file lfn is auto­
matically rewound.

This directive is used in conjunction with the cREJAD directive.
Thus, if it is desired to rewind a file before the read operation
begins, this directive must precede the cREAD directive in
the submit file.

Indic'ates that the escape code character is to be changed
from c 1 (current escape code) to c2 (new escape code). The
new escape code will be used to recognize all subsequent
reformatting directives until further change.

There is no restriction on the maximum number of characters per line for transparent
mode. For all other modes, no line can exceed 150 (6-bit) characters.

If the user determines that an error occurred during processing of his job,' he may
reference a listing of the user's dayfile as an aid in identifying the cause of the error.
The user's dayfile contains a record of the job processing activity and is disposed to
the local batch queue or the Export/Import queue for printing when the job is terminated.
However, all output is normally dropped at job termination when a batch job image is
submitted from a time-sharing terminal. This includes the dayfile output as well as the
job output. In this event, the user can make provisions within his job to save the con­
tents of the dayfile if an error in processing occurs. This is done by including the
following control statements at the end of the control statement record •

. lnx EXIT.

lny

lnz

DA YFILE(ifn)

REPLACE (lfn)

If the submitted job contains an illegal USER statement, the job entering the SUBMIT
statement is aborted (no exit processing), and the foll~wing messages are issued to
the dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT

1-6-24
60435400 C

The security count for the user number that entered the SUBMIT statement will be
decremented accordingly.

In addition, the following message is issued to the account dayfile.

SlUN, usernum.

Terminal users will be immediately logged off with no dayfile message. For further
information concerning use of the SUBMIT statement from a time-sharing terminal,
refer to the Time-Sharing User's Reference Manual.

SUI STATEMENT

The SUI cOQtrol statement allows a user to access a permanent file catalog without using
the USER statement.

The control statement format is:

SUI(n)

n User index desired; O~n~3777778.

The SUI statement is useful if validation is not active. Only system origin jobs may issue
this control statement. If the job is not of system origin, the following message is issued.

CPM ILLEGAL REQUEST.

SUMMARY STATEMENT

The SUMMARY control statement gives information about the system to the user.
'Three forms of the command are allowed.

The control statement formats are:

SUMMARY(OP=PIP2. • • Pn# IN=jobname# FN=lfnl, O=lfn2)

or

SUMMARY(PIP2° • ° Pn)

or

SUMMARY.

The parameters and function of this control statement are identical with the ENQUIRE
statement described in this section. except that the third form of the statement
(SUMMARY~) defaults to the OP=R option.

60435400 C 1-6 -25

I

SWITCH 5T A TEMENT

The SWITCH control statement sets the pseudo-sense switches for reference by the user's
program.

The control statement format is:

SWITCH(s I' s2' ••• , sn)

Sense switch to beset; l<si<6. If si=O is specified, all
sense switches are set. -

The system stores the sense switch settings in the control point area and copies them
to RA for use by the central program. The system operator can change these settings
by console command.

This control statement! performs the same function as the ONSW control statement.

USECPU 5T A TEMENT

The USECPU control statement specifies which central processor is to be used when more
than one is available for processing.

The control statement format is:

USECPU(n)

n = 0 Either central processor is used.

n = 1 CPU 0 is used.

n = 2 CPU 1 is used.

The USECPU statement may be used only when the system is running on a CDC CYBER
73-2x, 74-2x, 6500, 6700, or CDC CYBER 174 system. On a 74-2x or 6700, CPU 0 is
the parallel processor, and CPU 1 is the serial processor. On the other systems, both
CPUs are serial processors. This statement is ignored on single CPU machines.

1-6 -26 60435400 C

USER STATEMENT
The system utilizes the USER control statement to determine if the programmer is a
legal user, which resources he is validated to use, and the extent (limits) to which he
may use those resources. Comment statements are not nllowed between the job and I
USER statements of jobs entering the system via an LDI or SUBMIT statement. If this
is attempted, the first comment statement is interpreted as an illegal USER statement
and the submitting job is aborted with appropriate messages to the dayfile. The submitted
job is dropped.

The control statement format is:

USER(usernum, passwrd, familyname)
usernum A 1- to 7 -character alphanumeric user number

passwrd

familyname

A 1- to 7 -character alphanumeric password

Optional parameter identifying the family t of permanent
file devices that have been or may be transferred from the
user's normal system to a backup system

This statement defines controls and validation limits 'for the job . and defines the userrs
permanent file base. An installation may operate with secondary USER statements
either enabled or disabled. If enabled.. the user may specify a different permanent file
catalog during job processing by issuing another USER statement.. However, the access
limits for the user named in the first USER statement remain in effect for all sub-

I

sequent USER statements (refer to the LIMITS control statement in this section for in­
formation concerning access limits). If secondary USER statements are disabled (de-
fault mode) and a secondary USER statement is issued, the job is aborted (no e·xit
processing). The security count for the current user number is decremented accordingly .. I
and the following messages are issued to the dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT •

. In addition, the following message is issued to the account dayfile.

SIUN, usernum.

The job will also be aborted, the security count decremented, and the preceding messages
issued if an illegal or invalid USER statement is detected at any time, regardless of
whether secondary USER statements are enabled or disabled. In all cases, terminal
users will be immediately logged off with no dayfile message issued to the terminal.

If the security count for the user number is exhausted, the system issues the following
message.

ILLEGAL USER NUMBER - CONTACT SITE OPR.

When this occurs, the user number will be denied all access to the system until the
security count has been reset by the installation personnel.

Normally, the .familyname parameter need not be included on the USER statement.
However, if the user makes a practice of specifying his family name each time he
submits a job, he can be sure that his job will be processed even if his normal sys­
tem is not available and his permanent file family had to be moved to a backup system.
If, after the first USER statement, the user does not st:>ecify a. falnilyname on the USER
statement, his permanent file family remains the same. If the user specifies. the 0
(zero) familyname, his permanent file family becomes the system default family.

t Refer to section 2 for a description of permanent file devices.

60435400 C
1-6-27

Example:

An installation has two systems. A and B. System B provides backup service for sys­
tem A. The system default family name for system A is AFAM and the system de­
fault family name for system B is BFAM.

During .normal operations. system A user CWJONES with password JPWD could enter
either of the following USER statements.

USER(CWJONES. JPWD)

USER (CWJONES. JPWD. AFAM)

System Buser JDSMITH with password SPWD could enter either of the following state­
ments.

USER.(JDSMITH. SPWD)

USER(JDSMITH. SPWD. BFAM)

If system A failed. user CWJONES would be required to enter

USER(CWJONES. JPWD. AFAM)

to identify his family of permanent file devices. User JDSMITH could enter either of
the USER statements as before because the default family name would still be valid.

If the user attempts to access permanent files on a device not present in the alternate
system. one of the following messages is issued to the user's dayfile.

DEVICE UNAVAILABLE. AT nnn.

DIRECT ACCESS DEVICE ERROR.
AT nnn.

This message is issued if the user's
master device t was not transferred to
the backup system.

This message is issued if the user
attempted to reference direct access files
on a device (other than his master de­
vice) not present in the backup system. t

t Refer to section 2 for a description of permanent file devices.

I 1-6-28 60435400 C

FILE MANAGEMENT CONTROL STATEMENTS 7

The file management control statements enable the user to manipulate files attached to
his job. The control statements included in this category are:

ASSIGN COPYEI NEW SKIPF

BKSP COPYSBF OUT SKIPFB

CATALOG COPYX PACK SKIPR

CLEAR DISPOSE PRIMARY SORT

COMMON DOCMENT RENAME STAGE

CONVERT EVICT REQUEST TDUMP

COPY GTR RESEQ UNLOAD

COPYBF LIBEDIT RETURN UNLOCK

COPYBR LIDGEN REWIND VERIFY

COPYCF LIST80 ROUTE VFYLIB

COPYCR LOCK .SETID WRITEF

L072 SKIPEI WRITER

The statements in this section allow the user to position his files. copy data from one file
to another. s.pecify method and format of input/output. sort his files. and add correc­
tions. He can assign his files to a specific device type; change the file type. identi­
fication code. and write interlock status; and release them from job attachment. The
user can also receive information about records in a file or documentation in a file
containing COMPASS source' code.

If an error is encountered in an operation on one file of a multiple file request. the
operation is not performed on the following files. For example. if an error occurs in
processing file B on the following control statement:

GET(A. B. C. D)

files C and D are not processed.

If a file is not specifically assigned through the use of an ASSIGN. LABEL. or
REQUEST control statement, the system assigns the file to available mass storage.
Refer to the ASSIGN and REQUEST statements in this section and Tape Management
control statements in section 10 for a more detailed description.

60435400 C 1-7-1

I

I

I

•

I

ASSIGN STATEMENT

The ASSIGN control statement directs the system to assign a file to the specified device
or device type. The following descriptions refer to devices other than magnetic tape.
For use of the ASSIGN statement with magnetic tape, refer to section 10.

The control statement format is:

ASSIGN(nn, Ifn, {g~})

nn Device or device type to which the specified file is to be
assigned; nn may be either the EST ordinalt of a peripheral
device or the device type as defined as follows:

Type

CP

CR

DE

01

OJ

DP

LP
LQ
LR

LS

LT
MD

MS

NE
TT

Equipment

415 Card Punch

405 Card Reader

Extended Core Storage

844-21 Disk Storage Subsystem

844-41/44 Disk Storage Subsystem'

Distributive Data Path to ECS

512 or 580 Line Printer
512 Line Printer
580-12 Line Printer

580--16 Line Printer

580-20 Line Printer

841 Multiple Disk Drive

Mass Storage Device

Null Equipment

Time-Sharing Multiplexert t

lfn Name of the file to be assigned to the specified equipment

CK Specifies that lfn is to be used as a checkpoint file. Each time
a checkpoint dump is taken, the new information is written at the
previous EOI of lfn.

CB Specifies that Ifn is 'to be used as a checkpoint file. Each time a
checkpoint dump is taken, the new information is written at the
BOI of ·lfn.

Before performing the assignment, the system issues a RETURN on Ifn. Any job can
assign a file to MS, and any time-sharing origin job can assign a file to TT. However,
to assign any other devices, the job must be of system origin or the user must be
validated for system origin privileges. t t t
If the user attempts to perform an assignment for which he is not validated, the job is
aborted and the following message is issued to the user's dayfile.

ILLEGAL USER ACCESS.

t Contact installation personnel for a list of EST ordinals.
t t This device type applies only to time- sharing origin jobs.

t t t Refer to LIMITS control statement, section 6.

1-7-2 60435400 C

In addition, to assign a file to any nonmass storage device except device type TT, the
user must be validated to use nonallocatable devices.' If the user does not have this
validation or the device is not available, the system aborts the job.

The user should not normally assign any nonallocatable devices to his job. While it is
possible to assign a central site card reader, line printer, or card punch directly on­
line to the user's job, only a subset of the capabilities of local batch input! output are
available through this method of access. Also, there is no need to assign nonall6catable·
devices to local files named OUTPUT, PUNCH, pa. or PUNCHB and any other local
file disposed to an output queue because these files are always processed upon job
completion.

Example 1:

ASSIGN(MS. OUTPUT)

This statement assigns file OUTPUT to mass storage. With this assignment, a time-sharing
user causes output normally printed at his terminal to be written on a mass storage
file instead,. Here, output means information generated by a program during execution.
Informative and. error messages ar'e still printed at the terminal. Once this assign­
ment is made, output is written on the mass storage file OUTPUT until the file is
returned or reassigned.

Example 2:

ASSIGN(TT, XY Z)

This statement assigns file XYZ to the user's time-sharing terminal. The assignment
causes output that would normally be written on XY Z to be printed at the terminal in­
stead.

Example 3:

ASSIGN(MD, ABC)

This statement assigns file ABC to an 841 Multiple Disk Drive if one is available.

The ASSIGN statement can also be used to create or access existing 7- or 9-track unlabeled
tapes. For a description of the statement as it applies to magnetic tape assignment, refer
to Tape Management, section 10.

BKSP STATEMENT

The BKSP control statement directs the system to bypass a specified number of logical
records in the reverse direction.

The control statement format is:

BKSP(1fn, n, m)

Un Name of the file to be backspaced

n Number of logical records (decimal) to backspace; if this
parameter is omitted, the system assumes n=1.

m File mode; C for coded, B for binary. If omitted, the system
assumes the file is in binary mode.

The BKSP request can be issued at any point in a logical record. If, for example,
FILE1 were positioned within the third record, a

BSKP(FILE1)

60435400 A 1-7-3

request would reposition FILE1 to the beginning of the third record. The system does
not backspace past the beginning .. of information (BOO. However, EOF indicators are
considered separate records and are included in the record count. An unrecognizable
record count causes the message

ERROR IN FILE ARGUMENTS.

to be issued to the user's dayfile.

I The BKSP statement has no effect on a primary file since that file is rewound before every
operation.

CATALOG STATEMENT

The CATALOG control statement requests a listing of information about each record in a
specified file.

The control statement format is:

Name of the file to be cataloged

May be one of the following.

N=O Catalog until an empty file is encountered

N=x Catalog x files; default is N=1

N

L=fname

U

D

R

CS

Catalog to end of information

Specifies the name of the file to receive output;
if this parameter is omitted, the system assumes
L=OUTPUT

Select user library list (not given unless selected)

Suppress all comment fields; suppress all page
headings after the initial page heading for each
individual file

Rewind lfn before and after cataloging

Suppress character set list for OPL (old program
library) and OPLC (old program library common
deck) type records.

The listing for each file of a multifile set begins on a new page with a page heading
for that file. If the D option has been specified, the page heading appears only once,
at the beginning of the file. The information listed includes:

•
•

•
•
•
•
•

1-7-4

Number of the record cataloged ..

Record name from the first word of the record or the second word of the prefix
(77) table, if present

Record type (list of valid record types follow this list)

Length (less 77 table length) in words printed as an octal number

A checksum (not including the 77 table)

Dates and comments in 77 table, if present

Character set mode for OPL/OPLC type records .. (unless suppressed by CS option)

60435400 C

Type may be one of the following.

• ABS Multiple entry point overlay.

• CAP Capsule loader record (supported by CDC CYBER Loader 1.3) I
• OPL

• OPLC

• OPLD

• OVL

• PP

• PPU

• REL

o TEXT

• ULIB

Modify old program library deck

Modify old program library common deck

Modify old program library directory

Central processor overlay

6000 series peripheral processor program

7600 peripheral processor program

Relocatable central processor program

Unrecognizable as a prog'ram

User library program

Entry points are listed for REL and ABS format records. The entire record is listed
for TEXT format records if the name of the· record begins with CMRDECK. CMRDC.
IPRDECK. IPRDC. LIBDECK. or LIBDC. The first line is listed for TEXT format
records if the name of the record begins with OVERLAY. Correction identifiers and
their YANK status (refer to the Modify Reference Manual) are listed for OPL and
OPLC records.

A ULIB format record suppresses listing of records in the library unless the U option is
specified on the control statement. Zero-length records cause the length since the last zero­
length record to be listed. EOFs cause the length since the last EOF to be listed.

Figure 1-7-1 illustrates a portion of the catalog of SYSTEM.

CATALOG OF SYSTf:M FILE 1
REC NAME TYPE LeNGTH CKSUM DATE CO:1MENTS

479 HELP ABS 2374 06~2 75/04/1Q. 71/03/02. 73/12/17.
HtLP
t<.FL=

480 GTR ABS 1614 6644 75/04/19. 73/05/17. 75/04/19.
G TR
COPYRF
MFL=

481 LISEDIT OVL ()i.h CO 4402 4143 75/04/19. 70/06/06. 75/04/19.
482 LISTL8 1\6S 1156 7017 75/04/19. 74/01/18. 75/04/19.

LISTLB
KFL=
ARG=

483 - LISTtiO A!~ S 1340 5774 75/04/1=J. \)1/2,)/70. 71102114.
LISTtl0
RFL=

484 LU72 ARS 32~1 7765 75/04/19. 70/0'3/01.
lJ7?
KFL=

485 MSJRT :.JVL .10, .)J 255 1100 7'JI04/1-}. /1/0J/01. 73/08/15.

Figure 1-7-1. Sample Page of Catalog of SYSTEM

60435400 C 1 .. 7-5

486 PACK AB~ 440 1710 75/04/19. 71/01/06. 74/04/24.
PACK
RFL-

487 RESEQ ASS 1625· 1644 75/04/19~ 71/02/28. 75/04/19.
REStQ

. RFL-
488 RESTART IlBS 1365 2347 75/05/20. 73/09/25. 75/04/20.

RESTART
DKPa
RFLa
SSJa-

489 SORT UVL 00,00 757 1357 75/04/19. 71/03/01. 72/03/06.
490 STA\iE ASS. 11b1 3535 75/04/19·. 73/06/26. 74/07/30.

STA-GE
RFL-

491 SUBMIT ABS 1521 3066 75/04/22. 75/04/20.
SUBMIT
RFL-

492 ·TCOMND ASS 105 2622 75/04/19. 74/08/28. 74/08/28.·
ASCII
CSET
PARITY
RFl-

493 TOUMP ASS 1160 4467 75/04/19. 73/05/05. 74/11/23.
TilUf1P
RFl:

494 VAlNET· OVl OJ,OO ·6115 1234 75/04/19. 72/06/14~
495 VERIFY ABS 1513 4226 75/04/19. 73/0-.;/05. 75/04/19.

VERIFY
RFL=

496 VFYLIB ASS 1407 2505 75/04/19. 73/12/07. 75/04/1Q.
VFYLIS
MFL=

497 OUT PP (110u) 152 17~2 75/04/19. 75/03/20.
498 SfolP PP (1100) 156 5337 75/04/19. 71/07/27. 73/05/08.
499 (00) SUM = 115115
500 KRONREF OVl 00,00 1706 3334 75/04/19. 70/10/26. 7,..,07/30.
501 ~aOIFY ASS 7272 5174 75/04/19. 74/12/19. 75/04/19 •

• '10JIFY
RFL=.

502 OPLiDIT ~AS 3475 6314 75/04/19. 75/03/20.
OPlEDIT
~Fl=

503 UPMOD ABS 1746 1366 75/04/19. 70/05/06. 75/04/19.
UPr1-0D
MFL=

504 COMt>ASS QVl 00;00 720 2452 75/03/27.
5.J5 COMP3$ OVL Ol,CO 7v06 7037 75/03/27.
506 COMP"3$A OVL J1,01 13677 6127 75/03/27.
507 U~DATE A3S 14025 6065 75/03/27.

UPDATE
i<Fl=

Figure 1-7-1. Sample Page of Catalog of SYSTEM (Cont-d)

1-7-6 60435400 A

CLEAR STATEMENT

The CLEAR control statement releases all the user's current working files.

The control statement format is:

CLEAR.

If a primary file exists" only the file name is retained; information within the file is purged.
The empty file remains available as the primary file.

COMMON STATEMENT

The COMMON control statement is used to either create or access a library type file.

The control statement format is:

COMMON(lfn1, lfn2, ••• " lfnn)

lfn Logical file name

The user must be validated to access! create library files. The specified file must be a
local mass storage file. If lfn is not local" a search is made for a library file by that name
and an error message issued if the file is not found. If the operation completes success­
fully" the file is attached to the user's job as a library type file.

Before a local file can be made a library file" it must be locked. Refer to LOCK Statement
in this section.

CONVERT STATEMENT

The CONVERT control statement converts records from one character set to another.

The control statement format is:

CONVERT(Pl" P2" • • • • Pi)
Pi May be one of the following.

60435400 B

P=lfnl Input on file Ifn1; if omitted" file OLD is assumed

N=lfn2 Output on file lfn2; if omitted" file NEW is assumed

64

TS=t

Maximum record size in characters (decimal);
1 < n < 500. If omitted" 300 is the assumed maxi­
mum record size. (Each character is 6 bits.)

Convert from 63- to 64-character set; if omitted, no
conversion takes place. The TS option must be
specified if 64 is not.

Convert from old time -sharing 61-character set to
new time-sharing 63-character set; t may be one of
the following terminal types.

t Terminal Type

TTY ASCII code terminal with standard
print

COR Correspondence code terminal
with s tanda'rd print

CORAPL Correspondence code terminal
with APL print

MEMAPL Memorex 1240 (ASCII code) termi­
nal with APL print

BLKEDT Block transmission (ASCII code)
terminal with full display screen
editing capability and standard
print 1-7-7

R

NM

If t is omitted, it is assumed to be TTY. If TS is
omftted, no time-sharing conversion takes place.
The 64 option must be specified if TS is not.

Rewind input and output files prior to processing.
If omitted, no rewind takes place.

C0I.1vert n2 decimal :r'ecords. If n2is omitted, con­
vert until an EOF is encountered. If RC is omitted,
one record is assumed.

Used in conjunction with TS parameter and specifies
that conversion is to normal mode; if omitted, con­
version is to ASCII mode. Note the effect of conver­
sion on the follow.ing characters.

",(circumflex) If TS is specified, display code 70
(circumflex character) is con­
verted to.76. If NM is omitted,
conversion is to 7402 (ASCII mode).

: (colon) If TS and 64 are specified, display
. code 63 (colon character) is con­
verted to 00. If NM is omitted,
conversion is to 7404 (ASCII mode).

The fo"tlowing table lists legal conversion using the appropriate CONVERT parameter.

·Type of Record

63-character set, nontime-sharing record

Old time-sharing record

Legal Conversion Parameters

64

.TS or
64 and TS

New NORMAL time -sh~ring record
(equivalent to BATCH character set)

64

New ASCII time-sharing record none

COpy S1 A1EMENT

The COpy control stat,ement causes the first file specified to be copied to the second file.

The control statement format is:

COpy (1£n
1

, Ifn
2

, x, c)

1-7-8

Ifn1 Name of the file to copy from; if this parameter is omitted, file
INPUT is assumed.

1£n2 Name of the file to copy to; if this parameter. is omitted, file
OUTPUT is assumed.

x

c

If a third parameter (1 to 7 alphanumeric characters) is present,
both files are rewound before the copy begins and rewound, veri­
fied, and rewound again after the copy is complete.

If a fourth parameter (1 to 7 alphanumeric characters) is present,
the copy to or from an SI, S, or L format tape is performed in
coded rather than binary mode.

60435400 B

The copy begins at the current position of both files, unless the x parameter is speci­
fied, and continues until an empty file (a double EOF) or EOI is encountered in IfnI.
If the copy is terminated by a double EOF, the second EOF is detected but is not trans­
ferred to Ifn2. That is, if the files are not rewound after the copy (x parameter not
specified), file IfnI is positioned after the second EOF and Ifn2 after the first EOF.

When a COpy control statement operates with B or E format magnetic tapes, a specific
frame count (FC) is required to ensure logical coincidence between the original and the
copy (refer to ASSIGN and LABEL Statements, section 10). For disk-to-tape and tape-to­
disk copies, FC must equal 640, and for tape-to-tape copies, the FC counts for both
tapes must be equal.

The COpy statement may produce unpredictable results when copying S, L, and F
format tapes. The user should check these formats in section 10 before using them
with this control statement.

COPYBF STATEMENT

The COPYBF control statement causes a specified number of binary files to be copied from
one file to another.

The control statement format is:

COPYBF(lfnl' lfn2' n, c)

n

c

Name of the file to copy from; if this parameter is omitted, file
INPUT is assumed.

Name of the file to copy to; if this parameter is omitted, file
OUTPUT is assumed.

Nurnber of files (decimal) on IfnI to copy; if this parameter is
omitted, n=l is assumed.

If a fourth parameter (1 to 7 alphanumeric characters) is present,
the copy to or from an SI, S, or L format tape is performed in
coded rather than binary mode.

The copy begins at the current position of IfnI. If IfnI =lfn2' n files are skipped but no
data transfer occurs. If the EOI is encountered before the file count is satisfied, an
EOF is written on lfn2' and the operation terminates.

When a COPYBF control statement operates with B or E format magnetic tapes, a
specific frame count (FC) is required to ensure logical coincidence between the original
and the copy (refer to ASSIGN and LABEL Statements, section 10). For disk-to-tape
and tape-to-disk copies, FC must equal 640, and for tape-to-tape copies, the FC counts
for both tapes must be equal.,

The COPYBF statement may produce unpredictable results when copying S, L, and F
format tapes. The user should check these formats in section 10 before using them with
this -control statement.

60435400 C 1-7-9

I

I

COPYBR 51 A1EMEN1

The COPYBR control statement causes a specified number of binary records to be copied
from one file to another.

The control statement format is:
COPYBR(lfn1, Ifn2 , n, c)

IfnI Name of the file to copy from; if this parameter is omitted,
file INPUT is assumed.

n

c

Name of the file to copy to; if this parameter is omitted,
file OUTPUT is assumed.

Number of records (decimal) to copy; if this parameter is
omitted, n=1 is assumed.

If a fourth parameter (1 to 7 alphanumeric characters) is
present, the copy to or from an SI, S, or L format tape
is performed in coded rather than binary mode.

The copy begins at the current position of ifnt. EOF indicators are considered separate
records and are included in the record count. If ifnt =lfn2' n records are skipped but
no data transfer occurs. If the EOI is encountered before the record count is satisfied,
an EOF is written on lfn2, and the operation terminates.

The COPYBR statement may produce unpredictable results when copying S, L, and F
format tapes. The user should check these formats in section 10 before using them
with this control statement.

COPYCF 5T A TEMENT

The COPYCF control statement directs the system to copy a specified number of files from
one file to another.

The control statement format is:

COPYCF(lfn1, lfn2, n, fchar,lchar)

n

fchar

lchar

Name of the file to copy from; if this parameter is omitted ..
file INPUT is assumed.

Name of the file to copy to; if this parameter is omitted,
file OUTPUT is assumed.

Number of files (decimal) to copy; if this parameter is
omitted .. n= 1 is assumed •.

First 6-bit character position of each line to
copy; if this parameter is omitted, fchar=1 is
assumed.

Last 6-bit character position of each line to copy;
if this parameter is- omitted, .1char=136 is assumed.

The copy begins at the current position of IfnI. If IfnI =Ifn2' n files are skipped but no
data transfer occurs. If the EOI is encountered before the file count is satisfied, an
EOF is written on If~, and the operation terminates. COPYCF reformats the file into
line images if it is blocked in greater than Lchar blocks.

1-7-10 60435400 C

If l.char is less than fchar. lchar is greater than 150. or either fchar or lchar is un­
recognizable. the following error message is issued to the user's dayfile.

ILLEGAL CHARACTER NUMBER.

If COPYCF is attempted on a line longer than 150 (6-bit) characters. the following I
message is issued:

NO LINE TERMINATOR.

If n is illegal or zero, the following message is issued.

ILLEGAL COUNT.

The COPYCF statement may produce unpredictable results when copying S. L. and F I
format tapes. The user should check these formats in section 10 before using them
with this control statement.

COPYCR STATEMENT

The COPYCR control statement directs the system to copy a specified number of records
from one file to another.

The control statement format" is:

COPYCR(Ifnl.lfn2, n, fchar,lchar)

IfnI Name of the file to copy from; if this parameter is omitted.
file INPUT is assumed.

n

fchar

lchar

Name of the file to copy to; if this parameter is omitted,
file OUTPUT is assumed.

Number of records (decimal) to copy; if this parameter is
omitted, n=1 is assumed.

First 6-bit character position of each line to
copy; if this parameter is omitted, fchar= 1 is
assumed.

Last 6-bit character position of each line to copy;
if this- parameter is omitted. lchar=136 is
assumed.

The copy begins at the current position of IfnI' If IfnI =Ifn2. n records are skipped but
no data transfer occurs. EOF indicators are considered separate records and are in­
cluded in the record count. If the EOI is encountered before the record count is satis­
fied. an EOF is written on Ifn2' and the operation terminates. COPYCR is processed
in exactly the same manner as the COPYCF control statement except that n specifies the
number of records rather than the number of files.

If COPYCR is attempted on a line longer than 150 (6-bit) characters.. the following I
message is issued.

NO LINE TERMINATOR.

The COPYCR statement may produce unpredictable results when copying S.. L, and F I
format tapes. The user should check these formats in section 10 before using them
with this control statement.

60435400 C 1-7-11

I

COPYEI STATEMENT

The COPYEI control statement directs the system to copy one file to another.

The control statement format is:

COPYEI(lfn
1

, lfn2, x, c)

Ifn1 Name of the file to copy from; if this parameter is omitted,
file INPUT is assumedo

x

c

Name of the fHe to copy to; if this parameter is omitted, file
OUTPUT is assumed.

If a third parameter (1 to 7 alphanumeric characters) is
present, both files are rewound before the copy, and rewound,
verified, and rewound again after the copy is completeo

If a fourth parameter (1 to 7 alphanumeric characters) is
present, the copy to or from an SI, S, or L format tape is
performed in coded rather than binary mode.

The copy begins at the current position of Ifn t and continues until the EOI is encountered.
The EOI is not defined for certain tape formats (refer to Data Formats, section 10).

When a COPYEI control statement operates with B or E format magnetic tapes, a
specific frame count (FC) is required to ensure logical coincidence between the original
and the copy (refer to ASSIGN and LABEL Statements, section 10). For disk-to-tape
and tape-to-disk copies, FC must equal 640, and for tape-to-tape copies, the FC counts
for both tapes must be equal.

The COPYEI statement may produce unpredictable results when copying S, L, and F
format tapes. The user" should check these formats in section 10 before using them
with this control statement.

COPY5BF 5T ATEMENT

The COPYSBF control statement enables the user to copy a file where the first character of
each line. is not a printer control character and is to be printed.

The control statement format is:

COPYSBF(lfn
1

, lfn
2

, n)

n

Name of the file to copy from; if this parameter is omitted,
file INP.UT is assumed.

Name of the file to copy to; if this parameter is omitted, file
OUTPUT is assumed.

Number of files (decimal) to copy; if this parameter is omitted,
n=l is assumed.

The COPYSBF routine copies n files beginning at the current position of Ifn1 to file lfn
2

,
shifting each line image one character to the right and adding a leading space. Each
line image may contain up to 150 (6-bit) characters. Any characters beyond 150 will
be lost. A page eject character is inserted at the beginning of each logical record
(refer to section 9 for a list of carriage control characters). If lfn

1
=lfn

2
, n files are

skipped but no data transfer occurs. If the EOI is encountered before tne file count is
satisfied, an EOF is written to lfn

2
, and the operation terminates.

1-7-12
60435400 C

If COPYSBF is attempted on a line longer than 150 (6-bit) characters, the following I
message is issued. .

NO LINE TERMINATOR.

The COPYSBF statement may produce upredictable results when copying S, L, and F I
format tapes. The user should check these formats in section 10 before using them
with this control statement. "

COPYX STATEMENT
The COPYX control statement enables the user to specify certain conditions when copying
logical records.

The control statement format is:

COPYX(lfn1' Ifn2, x, b, c)

Ifn1

x

b

c

Name of the file to copy from; if this parameter is omitted,
file INPUT is assumed.

Name of the file to copy to; if this parameter is omitted,
file OUTPUT is assumed.

Copy specifications; if omitted, one record is copied. The
value for x may be one of the following:

x

n

00

Meaning

Number of records (decimal) to copy

Copy all records up to and including first
zero-length record (double EOF or EOI)

name Copy all records up to and including record
of specified name (record name is first
seven characters of record)

type / name Copy all records up to and including record
of specified type and name (refer to CATA­
LOG control statenlent for list of valid
record types)

Backspace control; if omitted, 0 is assumed.

b

o
1

2

Meaning

No backspace

Backspace file lfni one record after copy
completes

Backspace file lfn2 one record after copy
completes

3 Backspace files Ifn1 and lfn2 one re"cord'
after copy completes

If a fifth parameter (1 to 7 alphanumeric characters) is
present, the copy to or from an SI, S, or L format tape
is performed in coded rather than binary mode.

The COPYX routine copies logical records from file Ifn1 to file Ifi12 at the current position
of Ifn1 until the condition specified by x is met. It then backspaces the files according to
the value specified by the b parameter. If Ifn1 =Ifn2, the file is repositioned according to
the x parameter; no data is transferred.

60435400 C 1-7-13

I

I

The COPYX statement may produce unpredictable results when copying S. L. and F format
tapes. The user should check these formats in section 10 before using them with this control
statement.

DISPOSE STATEMENT1

The DISPOSE control statement is used to release specified files to the proper output
queues.

The control statement format is:

DIS POSE (lfn1 =qv lfn2=q2' •••• lfnn=qn/ ot=usernum)

lfni

qt

ot

usernum

Name of the file to be disposed

Queue type:

PR

PH
P9

Print

Punch coded 026

Punch coded 029

PB Punch binary

P8 Punch 80-column binary

Origin type to which files are to be disposed:

BC Local batch

EI Remote batch (Export/Import)

Number of the remote batch (that is. ot is EI) user to which
the files are to be disposed (ignored if ot is BC). This
parameter is valid only if the user is allowed deferred batch
jobs. Also, usernum must match the number of the user
performing the DISPOSE on all character positions except
those containing an ~:'.

The file type for file Ifni is changed to qi in the FNT / FST entry for Ifni. The system
then processes the file according to queue type. The user can dispose coded punch
files to either 026 or 029 regardless of the job's. initial keypunch mode. If the system
cannot recognize qi' the following message is issued.

ILLEGAL DISPOSE CODE.

If the ot and usernum parameters are not specifie~, a rp.mote batch ,job disposes the I files to the remote terminal from which it was submitted, and all other origin types
dispose the files to the central site output device. If ot is BC, the usernum parameter
is ignored and the files are disposed to the central site device.

I t The user should employ the ROUTE control statement for this operation.

1-7 -14 60435400 C

DOC'MENT STATEMENT
The DOCMENT control statement enables the user to extract either the external or internal
documentation from a file containing COMPASS source code.

The control statement format is:

DOCMENT(pp P2. • • • • Pn)
Pi The parameters can be in any order and must be in one

of the following forms.

Omitted The first default value is assumed.

a The alternate default value is assumed.

a=x x is substituted for the assumed value.

Any numeric parameter can be specified with a postradix character of either B or D.
The values that Pi can assume are:

I=lfn 1 Name of the file that contains the page footing information;
this must be a single statement in the following format.

Column(s)

1

2-45

46-55

56-60

61-70

Contents

Blank

Document title

Publication number

Revision level

Revision date

Name of the file containing the source statement images from I
which to extract the documentation. This file is rewound by
default unless the NR parameter is specified.

60435400 C

L=lfn3

N=nn

T=type

C=cc

P=pp

NR

NT

TC

Name of the file on which the output is to be written

Number of copies to be produced

Documentation type:

INT Internal documentation (detailed description
of the internal features of the software)

EXT External (documentation (detailed description
of the external features of the software)

Key character for documentation

Number of print lines per page

Disable rewind on the S (source) file

Negate table generator

List table of contents

1-7-15

I

I

The following are the default values for the parameters described.

Parameter

I

s
L

N

T

C

P

NR

NT

TC

First
Default

o

COMPILE

OUTPUT

1

EXT

60

REWiND

ON

OFF

Alternate
Default

INPUT

SOURCE

OUTPUT

1

INT

03

80

NO REWIND

OFF

ON

Comment

Page footing information; if I
is 0, no footing information
is printed.

Source statement images

List file

Number of copies (decimal)

Documentation type

Check character (two octal'
digits)

Number of print lines per page

Source file rewind status

Table generator status

Table of contents status

Refer to appendix C, volume 2 for a detailed explanation of the documentation standards
fol1owed. It also contains examples of external and internal documentation for program
COPYB.

EVICT 5T ATEMENT

The EVICT control statement releases file space for a specified file(s) but does not release
file attachment to the job.

The control statement format is:

lfn.
I

Name(s)' of the file(s) to be evicted

The operation that EVICT performs depends on the file type. For permanent files, all
file space except the first track is released, job attachment remains, and an EOI is
written on the first sector of the first track. For al1 other file types, file space is
released and job attachment remains. Also, all files for which write lockout is set
are returned to the system. An EVICT of a tape file performs the same function as
a RETURN except that EVICT cannot be used to decrease the number of tape units
scheduled via the RESOURC statement.

1-7 -16 60435400 C

GTR STATEMENT

The GTR control statement provides directives for specifying certain records to be copied
from one file to another.

The control statement format is:

GTR(lfn
l

, Ifn
2

, D, NR, S)selection directives

The parameters must be entered in the order shown; they are defined as follows:

Ifn
l

File which is searched for the selected records; if this pa­
rameter is omitted, file OLD is assumed.

lfn
2

File on which the selected records are written; if this pa­
rameter is omitted, file LGO is assumed.

D If specified, a directory record (OPLD type) is written at the end
of lfn2. In this case, lfn2 must be a mass storage file.

NR

S

selection
directives

This parameter has special meaning for ULIB type records, as
follows:

If D is omitted, the first record of the user library, that
is, the directory record (UPLD), is not copied to Ifn2;
the last record (OPLD type) is copied but is not altered.

If D is specified, the first record of the user library (UPLD)
is copied to lfn2' but is not altered, and an additional record,
a new directory for the file (OPLD type), is added to lfn2•

If specified, neither file is rewound after the operation. If not
specified, both files are rewound .after the operation.

IfnI is processed as a sequential file; no attempt is made to read
a directory.

The user can specify the record types and names that he wants
retrieved; these can be:

type/name Retrieves record of specified type and name
(refer to CATALOG control statement for a
list of valid record types). The record name
is the first seven characters of the record.

name

-0

type/namel -
name

2

Retrieves the record specified; the type is
either TEXT or the type specified previously.
If name= ,:~, all records of the specified type
are retrieved.

Inserts a zero-length record on file Ifn2•

Retrieves records namel through name2 of
type specified.

GTR searches file lfnl for the records specified by the selection directives. The selected
records are then copied to file lfn2. If lfn2 is a tape file, the selected records are copied
from the current position; if lfn2 resides on mass storage, the copy starts at the current
EOI of the file. This is because lfn2 is treated as a random file. Note that blanks are not
legal between the terminator and the selection directives.

60435400 C 1-7-17 I

I

Examples of the use of this control statements are:

• GTR(SYSTEM, BIN, D)PP/':<

All records of type PP are retrieved from file SYSTEM and copied to file BIN.
A directory is built and placed as the last record on file BIN.

• GTR(OPL, NEW, , NR)OPLC/ COMCARG, 0, COMCCIO

Record COMCARG (type OPLC) is retrieved from file OPL and written on
file NEW beginning at the current EOr. Then a zero-length record is written
on file NEW. Finally, record COMCCIO (also type OPLC) is retrieved from
file OPL and written on file NEW at its current position. File OPL is not
rewound either before or after the operation.

• GTR(SYSTEM, SYSLIB, D)ULIB/SYSLlB

The record named SYSLIB (type ULIB) is retrieved from file SYSTEM and
copied to file SYSLIB. The D parameter must be specified to copy the ULIB
directory (UPLD) of a ULIB record set. If the D parameter were omitted,
the UPLD record would be skipped.

LIBEDIT 51 A1EMEN1

The LIBEDIT control statement specifies directives for editing and replacing binary records
on a file with records from one or more correction files.

The control statement format is:

1-7-18

Any of the following parameters in any order:
-

I=lfnl Directives comprise the next record on file IfnI_
1=0 No directive input.
I omitted Directives are on file INPUT.

P= lfn2
p=o
P omitted

N=lfn3
N=O
N omitted

L=l

L=O
L omitted

File lfn2 contains the old program library.
No old program library file.
Old program library is on file OLD.

New program library will be written on file Ifn3_
Illegal; no error message is issued. if used.
New program library will be written on file NEW.

I NOTE I
The new program library is evicted
prior to processing (refer to EVICT
Statement in this section).

Short correction listing (includes only. directives.
modifications, and errors) on the file specified
by the LO parameter.
No output is listed.
Full correction listing is written on the file
specified by the LO parameter.

LO=lfn4 List output on file lfD4.
LO omitted List output on file OUTPUT .•

B=lfn5
B=O
B omitted

Use file lfn5 for the replacement file.
Do not use a default replacement file.
Use file LGO as the default replacement file.

60435400 C

C

C omitted

R

R omitted

v
V omitted

D·
D omitted

Copy the new program library file over the old
program library file after processing.
Do not copy th~ new program library file over
the old program library file after processing.

Do not rewind program library files after
processing.
Rewind old and new program library files after
LIBEDIT and VFYLIB processing.

Call VFYLIB after LIBEDIT processing.
Do not call VFYLIB to verify program libraries
after LIBEDIT processing.

Ignore errors and continue.
Do not ignore errors; abort job.

For a description of the LIBEDIT directives and examples of their use. refer to appendix C. I

LIBGEN STATEMENT

The LIBGEN control statement allows the user to generate a user library file.

The control statement format is:

LIBGEN(Pl· P2. • • •• Pn)

Any of the following in any order:

F=lfnl Name of source file containing records to be
placed on user library file lfn2'

F

F omitted

P

P omitted

System assumes sOUrce file LGO.

System assumes source file LGO.

Name of the file on which the user library is
to be written.

System assumes user library to be written
on ULIB.

System assumes user library to be written
on ULIB.

Name of the user library being generated; this
name becomes the name of the ULIB and OPLD
records.

N System assumes lfn3=lfn2'

N omitted System assumes lfn3=lfn2•

NX=n If n is nonzero. no cross-references are given.
That is. decks are not cross-linked in the ULIB
directory. This can be used to avoid duplicate
entry points on loads.

NX omitted The system assumes n=O.

I

LIBGEN processes the source file specified and generates a user library file on the file I
specified with the P parameter. The user library is given the name specified with the N
parameter. If the F and P options specify the same file. the message

FILE NAME CONFLICT.

is issued.

The F and P parameters may appear more than once. In such a case. the last occurrence
is used.

60435400 C 1-7-19

LIBGEN rewinds and scans the source file and builds a directory of all entry points, program
names, and external referencl.)s for.: records in the file. When an EOF mark appears,
LIBGEN terminates the directory and rewinds l~n1. LIBGEN then copies lfn1 to lfn2' adding
the library and directory records. The directory is written as the ·first record of the new
file. It is indicated as a user library type record by a 76 identification table. The identifica­
tion table also contains the name of the library.

The directory contains all external references within the library and the linkage to routines
that reside in the library. This indicates which routines must be loaded when routines from I this library are loaded. This means that all externals for routines in a user library are
automatically satisfied from that library first.

The entire file follows the directory record on the new file. The file index is the last record
on the file. This record contains random addresses for each record in the file. The index

I record has a table identifier of 7000S• LIBGEN processes REL type records, bypassing all
other record types.

For example. file RELB contains routines that are used at execution time for several appli­
cation programs. It is desirable to load these routines as needed when executing the applica­

I tion programs. To generate the user library, the following control statement

LIBGEN(F=RELB. P=MYLIB. N=APPLIB)

is entered. This creates user library APPLIB on file MYLIB. If FORTRAN application
programs are compiled using the control statement.

FTN.

the user library can be used by loading the program in the following manner.

LDSET(LIB=MYLIB/ RUNLIB)

LOAD(LGO)

EXECUTE.

This causes the program to be loaded and executed with externals satisfied first from user
library MYLIB, then from user library RUNLIB, and finally from the system default library
SYSLIB.

I For examples of the use of LmGEN, refer to appendix C.

LIST80 STATEMENT

The LISTSO routine reads a file containing COMPASS source code and compresses it to
SO columns, which fits on S-1/'2 by 11-inch printer paper.

The control statement format is:

1-7-20

LISTSO(Ifn 1, lfn2, NR)

Ifn!

NR

File to copy from; if this parameter is omitted, file LIST
is assumed.

File to· copy to; if this parameter is omitted, file OUTPUT
is assumed.

If this parameter is specified, Ifn1 is not rewound.

60435400 C

LOCK STATEMENT

The LOCK control statement enables the user to prevent writing on a file.

The control statement format is:

Logical 'file name of a local file

With the LOCK statement, the user can set the write interlock bit in the· FNT /FST entry for
a local file. Subsequently, the system allows only read operations on the file. The
file specified must be a local file; if it is not, the following message is issued.

ILLEGAL FILE TYPE.

The LOCK statement may also be used in conjunction with the COMMON statement to lock
local files before making them library files for multiple user access. Refer to Library
Files in section 2 and the COMMON control statement in this section.

L072 STATEMENT

The L072 control statement allows the user to specify the reformatting of his files.

The control statement format is:

L072(PI' P2' •.• , Pn)

Pi

60435400 C

Any of the following -parameters in any order:

I Reformat parameters are on file INPUT.
I=lfnl Reformat parameters are on file Ifni.
1=0 There is no input file of reformat parameters.

L
L=lfn3

T
T=x

H
H=xxx

If the I parameter is omitted, 1=0 is assumed.

Data to be reformatted is on file SCR.
Data to be reformatted is on file lfn2. If the
S parameter is omitted, SCR is assumed.

Reformatted data is listed on file OUTPUT.
Reformatted data is listed on file Ifn3. If the
L parameter is omitted, OUTPUT is assumed.

File to be reformatted is of type B.
File to be reformatted is of type x, where x is:

M Modify source data

C COMPASS source data

B Other source data

If the T parameter is omitted, B is assumed.

Number of characters per output line is 72.
Number of characters per output line is xxx
(maximum allowed is 150 characters). If the
H parameter is omitted, 72 is assumed.

I NOTE I
H must be greater than or equal to the
number of characters being moved (Nx)
plus the starting column number of the
destination field (Ox).

1-7-21 I

LP

NR

Nx=y

Ix=y

Ox=y

IT

Output is formatted for the line printer.

Output file is not rewound.

Specifies the number of characters to be moved
(up to 6 fields):

x(1 to 6) Number of the field being moved

y Number of characters being moved

I NOTE I
Nl+N2+N3+N4+N5+N6 must be less than or
equal to the number of columns specified
in the H parameter.

Specifies the field the data originates from:

x(1 to 6) Number of the field being moved

y Starting column of originating field

Specifies the destination field the data is going to:

x(1 to 6) Number of the field to receive data

y Starting column of destination field

Suppresses query to terminal asking if user wishes
to change any of the input parameters before proc­
essing begins. If omitted, query is issued. This
parameter is effective only from time-sharing
origin jobs.

The following table shows the default values assumed for the N, 0, and I parameters
for the variotls source types.

Type

B

C

M

Nl

72

7

2

11 01

1 1

9 1

6 1

N2 12 02

0 0 0

50 41 8

48 10 3

The remaining parameters of these types are defaulted to O.

N3 13 03

0 0 0

15 112 58

22 82 51

L072 reformats files (output files in genera!). The user can rearrange each line (all
lines must be formatted the same) in the format he chooses. All default values com­
press output to 72 columns, which is appropriate for terminal output or 8-1/2 .by 11-inch
printer paper. If a 1 is encountered in column 1 (the page eject printer control char­
acter), the next two lines of source data are processed as a two-line header. This
header is compressed to 72 columns for all source types. If no page eject control
characters are encountered, no headers are processed.

The following values apply to the first line of header and cannot be changed.

Nl=42, 11=8, 01=0 (if LP not specified; otherwise, 01=1)

N2=20, I2=90 y 02=42

N3=5, 13=115, 03=62

N4=5, 14=121, 04=67

The subheader lines for COMPASS and Modify listings are processed uniquely.

I 1-7-22 60435400 C

For B listings, the following values apply to the reformatting.

Nl=43, 11=8, 01=0 (if LP not specified; otherwise, 01=1)

N2=29, 12=70, 02=43

All parameters are passed to L072 by the control statement. If an input file is specified,
L072 reads it for additional input parameters. If the job originates from a time-sharing
terminal, and the IT parameter is not specified, the user is asked if he wishes to change
any of the input parameters. If he enters YES, the system prints the current parameter
values and allows him to change them individually. Pressing the carriage return key for any
parameter leaves the parameter at its former value. In the following examples, the same
input parameters are entered in three possible ways.

Control Statement:

L072(I=O, S=SOURCE, T=B, L=OUT, N4=I,14=2, 04=75, H=90)

Time-Sharing Terminal: (User entries are in lowercase. The symbol ®
indicates carriage return.)

/1072
DO YOU WANT TO CHANGE ANY CONTROL ARGUMENT VALUES­
ENTER: YES OR NO
? yes @>
ARGUMENT
INPUT FILE NAME:

VALUE

SOURCE FILE NAME: SCR ? source ~
OUTPUT FILE NAME: OUTPUT ? out @)
SOURCE FILE TYPE: BATCH? b ~
OUTPUT LINE LENGTH: 72 CHARS.? 90 ~

NO. OF MOVED FROM MOVED TO
CHARS. . COLUMN COLUMN

(X) (NX) (IX) (OX)
1. 72 1 1
2. 0 0 0
3. 0 0 0
4. 0 0 0
5. 0 0 0
6. 0 0 0

ENTER CHANGES IN THE FOLLOWING FORMAT:
NX=AA*CR*
IX=BB*CR*
OX=CC*CR*
ETC.
TO CONTINUE, ENTER *CR* ONLY. ? n4=1 ~

.? i4=2 ®
? 04=75 @
?@

L072 COMPLETE.

Input File: (Each line in the input file must end with a terminator.)

60435400 C

S=SOURCE, L=OUT, T=B.
N4=1, 14=2, 04=75
H=90.
-EOR-

1-7-23 •

NEW STATEMENT

The NEW control statement creates a primary file.

The control statement format is:

NEW(lfn/ND)

Name of file to be made primary file lfn

NO If this parameter is specified, current working files are not
released

The NEW statement creates an empty file and makes it the user's new primary file. Any
currently existing primary file is released.

Note that-all current working files are released unless the NO parameter is specified.

I Refer to the note in PRIMARY Statement in this section for use of primary file types.

OUT STATEMENT
The OUT control statement is used to release output files from the control point to the
output queue.

The control statement format is:

OUT.

The only files released are those having the names

OUTPUT.

. PUNCH·

PUNCHB

pa

or any local files belonging to one of these types. An example would be any of the above
files that had been renamed.

This control statement is used if the user wishes to initiate printing or punching of the files
before job termination. The PUNCH fUe is punched in either 026 or 029 mode depending
on the origin of the job. If the job is a local batch job, the coded deck is punched in the
initial keypunch mode of the job's control statement record. For all other' job origin types,
the coded file is punched in the system default keypunch mode.

1-7-24 60435400 C

PACK STATEMENT
The PACK control statement allows the user to pack a specified file and copy it to another.

The control statement format is:

PACK(lfnt.lfn2' x)

Ifnt Name of file to be packed

Ifn2 Name of file to receive packed data

x If a third parameter (1 to 7 alphanumeric characters) is
specified .. Ifn1 is not rewound before the pack occurs.

The input file. Ifnt. may consist of any number of records and/or files. If no third
paramete:r is supplied. Ifnt is read from the BOI to the EO I. and all EaR and EOF
marks are removed. It is written to file lfn2 at the current position as one record.
File lfn2 is rewound after the pack; Ifnt is not. If lfn2 is not specified .. file lfn t is
packed to its elf.

The programmer should note that problems may arise when using PACK with direct
access files. For example. if file A resides on a legal direct access file device and
the following cards are submitted:

PACK(A)

DEFINE(A)

PA CK may copy file A to a device which does not support direct access files. In this
event.. the DEFINE statement would then cause the job to abort and the following message
to be issued to the user's dayfile

DIRECT ACCESS DEVICE ERROR, AT nnn.

where nnn is the file environment table (FET) address. t

The user can avoid this situation by defining file A as an empty direct access file.
creating the file. and then packing it.

DEFINE(A)

create file A

PACK(A)

The following error messages may be issued to the user's dayfile in response to a PACK
statement.

Message

PACK PARAMETER ER~OR.

ILLEGAL INPUT FILE.

ILLEGAL CIa REQUEST.

WRITE ON READ-ONLY FILE fff,
AT nnn.

Des cription

The PACK control statement contains an error.

An attempt was made to pack a file that is
assigned to a time-sharing terminal (for
example, file INPUT for time- sharing origin
jobs represents data typed at the terminal
keyboard, and therefore, cannot be packed).

An attempt was made to pack a nonmass
storage file.

The direct access file was not attached in
write mode (refer to ATTACH Statement,
section 8).

t Refer to Permanent File Manager. section 5, volume 2.

60435400 C 1-7-25 I

I

PRIMARY STATEMENT

The PRIMARY control statement makes a local file the primary file.

The control statement format is:

PRIMARY(lfn)

lfn Name of local file

The file to be made primary must be a local mass storage file. Any currently existing
primary file (other than the lfn specified) is released. If the specified file is already pri­
mary, the operation is ignored.

I NOTE I
The primary file is rewound before every operation
performed on that file. Therefore, the file manipu­
lation statements BKSP, SKIPEI, SKIPF, SKIPFB,
and SKIPR cannot be used to position within the file.
The user should also remember that the primary
file is rewound after the completion of any of the
COpy statements. An attempt to add to the file
using one of the COpy statements may result in
writing over existing data at the BOI.

RENAME STATEMENT

The RENAME control statement allows the user to change th~ name of a local file.

The control statement format is:

nlfni

olfn.
1

New name of the local file

Existing name of the local file

The RENAME control statement is used to change the name of the file olfni to nlfni in the

I FNT / FST • This does not change the names of files in the permanent file system. Normally,
the file type of nlfn is the same as the file type of olfn.

If a file by the name nlfni already exists, it is returned to the system. Under certain
conditions, the system also' changes the file type of olfni to that of the file which was returned.

1-7-26

• If olfni is a local mass storage file and the returned file was a print, punch,
or primary type file, olfni is renamed and its file type is changed' to 'that
of the returned file.

• If olfn. is a local mass storage file and the returned file was not a print,
punch, l or primary type file, olfni is renamed but its file type is not changed.

• If olfn. is not a local file and nlfn and olfn are not the same file types or if olfni
does nlot reside on mass storage, an

ILLEGAL FILE TYPE.

error message is issued.

60435400 C

For example. the user has only two files assigned to his job. File A is a . local mass
storage file and file B is a print type file. If the user issues the following request

RENAME(X=A)

file A is renamed file X and its file type (local) is not changed. However. if the user issues
the request

RENAME(B=A)

file B is returned to the system; file A is renamed file B and changed to a print type file.

REQUEST STATEMENT

The REQUEST control statement enables the user to assign a file to a device by including
in the C<1mment field a description of an acceptable device.

The control statement format is:

REQUEST(lfn. {g~})

lfn

CK

CB

Name of the file to be assigned to the specified equipment.

Specifies that Un is to be used as a checkpoint file. Each time
a checkpoint dump is taken. the new information is written at the
previous EOr of Un.

Specifies that Un is to be used as a checkpoint file. Each time
a checkpoint dump is taken. the new information is written at the
BOr of lfn.

The descriptive comment is displayed at the system console. directing the operator to
make the requested assignment.

If lin already exists when the REQUEST is made. no new assignment is made and job
processing continues with the next control statement. However. the user can reassign lfn
by issuing a RETURN on the file before making the REQUEST.

Any user. regardless of his validation. may use the REQUEST statement to assign a file
to a mass storage device. However. to assign a file to a nonmass storage device.
the user must be validated to use nonallocatable devices. t If the user does not have
this validation and attempts to request a nonmass storage device. the system aborts
his job.

t Refer to LIMITS control statement. section 6.

60435400 C 1-7-27 I

If lin is to be used for checkpoint dumps. either the CK or CB keyword is specified.
These keywords are used in conjunction with the CKP and RESTART control statements;
they allow the user to:

• Save all checkpoint dumps by appending each dump to the checkpoint file:

REQUEST(lfn. CK)

• Save the last checkpoint dump by writing each dump at the beginning of the
checkpoint file:

REQUEST(lfn. CB)

• Save two consecutive checkpoint dumps by alternately writing on two
checkpoint files:

REQUEST(lfnt • CB)

REQUEST(lfn2 , CB)

If the CK parameter is specified for alternate files or if more than two checkpoint files
are specified, the job is aborted and the following message is issued to the user's day­
file.

CHECKPOINT FILE ERROR.

The CK and CB parameters specify a checkpoint file that is local to the job. The user
can make the checkpoint file permanent by placing a DEFINE' statement t before the REQUEST.

DEFINE(lfn)

REQUEST(lfn, CK)

CKP.

The user is not required to supply a REQUEST statement to define a checkpoint file. He
can use an ASSIGN or LABEL statement or he can ~se default values.

If no REQUEST statement specifying a checkpoint file has been detected when the first CKP
statement is encountered, the system requests a device for the user, specifies a file name
of CCCCCCC, and selects the CK option. For a subsequent restart job, however, the
system assumes the user has made the checkpoin:t file available.

The REQUEST statement can also be used to create or access existing 7- or 9-track un­
labeled tapes. If a magnetic ta'pe assignment is needed to satisfy a REQUEST, the MT or
NT parameter should be specified. For a description of magnetic tape assignment with the
REQUEST statement, refer to Tape Management, section 10.

t Any mass 'storage file used as a checkpoint file must have write permission.

I 1-7-28 60435400 C

RESEQ 5T A TEMENT

The RESEQ control statement is used to resequence source files which have leading sequence
numbers or to add sequence numbers to an unsequenced file. I
The control statement format is:

RESEQ(lfn, t, xxx, yy)

lfn

t

Name of the file to be resequenced

Type of file:

B BASIC source code

T

other

Text source information; a five-digit sequence
number plus a blank is added at the beginning
of each line; the file text, however, is not in­
spected

or
omitted

A ny number at the beginning of a line is con­
sidered a sequence number and is resequenced
according to the xxx and yy parameters; numbers
are added to lines where no leading sequence

xxx

yy

numbers are present. This option can be used
with time-sharing FORTRAN statements.

New line number of the first statement; if this parameter is
omitted. the system assumes xxx=100

Increment to be added to xxx for each succeeding line number;
if this parameter is omitted. the system assumes yy= 10 •

. Files which have leading sequence numbers include time-sharing FORTRAN and BASIC
source files. If the file has no leading sequence numbers. five-digit numbers are
attached to the beginning of each line. If the line number encountered or required ex­
ceeds 99999. the following message is issued.

LINE NUMBER LIMIT EXCEEDED.

Some BASIC statements reference the sequence numbers which must also be changed;
therefore. it is imperative that the ·user specify the proper file type (t). When errors
occur while resequencing a BASIC program, the following message is issued for all
lines containing errors.

ERROR AT LINE xxx.

The file being resequenced by the RESEQ statement must have previosuly been sorted.
Results are unpredictable if this requirement is not met.

RETURN 5T ATEMENT

The RETURN control statement releases the specified file from job attachment and/or
releases its file space.

The control statement format is:

lfn.
I

Name(s) of the file(s) to be returned

60435400 C 1-7-29

The operation performed depends on the file type.

Type

Input

Print

Punch

Local

System

Library

Primary

Permanent

Operation

The file name is changed to INPUT*. File space is not
released; INPUT~:~ remains attached to the job as a local
file (refer to Input File Control in section 3 for further
inf ormation).

Job attachment and file space are released.

Job attachment and file space are released.

Job attachment and file space are released.

Job attachment is released but file space remains.

Job attachment is released but file space remains.

Job attachment and file space are released.

Write interlock is cleared. Job attachment is released
but file space remains.

In addition, the RETURN statement can be used to decrease the number of tapes or packs
scheduled for the job via the RESOURC control statement. However, the number of tapes
or packs scheduled is decremented only if the number of tapes or packs scheduled have
actually been assigned to the user's job.

REWIND 51 A1EMEN1

The REWIND control statement causes files to be rewound and positioned to the BOI
(or beginning-of-reel for magnetic tape files).

The control statement format is:

Ifn.
I

Name(s) of file(s) to be rewound

If the previous operation on the magnetic tape file was a write, a REWIND statement
causes the following operations to be.performed.

1. If the tape is ANSI labeled, the system writes a tape mark, an EOF 1 label,
and three tape marks and then rewinds the tape.

2. If the tape is unlabeled and the data format specified on the ASSIGN, LABEL,
or REQUEST statement is X, S, L, E, B, or F, the system writes four tape
marks and then rewinds the tape.

3. If the tape is unlabeled and the data format is I or SI, the system writes
a tape mark, an EOF 1 label, and three tape marks and then rewinds the
tape.

Refer to Tape Management control statements in section 10 for further information about
tape files and to appendix G for a description of EOFI and EOVI labels.

I 1-7-30 60435400 C

ROUTE STATEMENT

The ROUTE control statement releases or prepares for release a designated file to the input
or output queue. The parameters associated with the file "may take effect when the statement
is processed or may be deferred to a later job step or job termination. This statement also
allows the user to rescind a prior deferred ROUTE statement, thereby making the named
file type LOFT.

The control statement format is:

ROUTE (lfn, Pl' P2' ... , Pn)

lfn Name of the file to route; depending on the options specified,
the file may be created or it may preexist.

The remaining parameters are order-independent, but at least one must appear.

p.
_1

PC=xx

60435400 C

Description

Disposition code; assumes anyone of the following
2-character codes.

IN Release file to input queue (Normal job input file for-
mat is required.)

LP Print on any printer

PR Same as LP

P2 Print on 512 printer

LQ Same as P2

LR Print on 580-12 printer

LS Print on 580-16 printer

LT Print on 580-20 printer

SB Punch system binary

PB Same as SB

P8 Punch 80-column binary

PU Punch coded

PH Same as PU

SC Res cind prior routing and make file LOFT

If the pC parameter is omitted. the default will depend on whether
or not a special file name is specified for lfn. If lfn is not a
special file name. the default is DC=SC. If Un is a special file
name, DC will assume one of the following values.

Special File Associated
Name DC

OUTPUT DC=LP

PUNCH DC=PU

PUNCHB DC=SB

P8 DC=P8

1-7-31 •

• 1-7-32

Pi

DEF

EC=xx

FC=xx

FID=xx

FM

FM=xx

Description

Indicates that routing of the file to the queue will be deferred
to a later job step or end of job. If this parameter is speci­
fied.. the file will be created if it does not exist. DEF is
not allowed if DC =IN •

Defines external characteristics for print- or punch-type files.

For print-type files .. xx may specify the following values.

A4 ASCII 4S-character set

A6 ASCII 64-character set

B4 Display code 4S- character set

B6 Display code 63 /64 -characte~ set

For punch-type files.. xx may specify the following values.

ASCII

026

029

SB

SOCOL

Punch ASCII

Punch 026 mode

Punch 029 mode

Punch system binary

Punch SO-column binary

I NOTE I
If the user includes the EC parameter on a
ROUTE statement, the file queue processor
may be unable to select that file for output.
If EC is not specified, an appropriate EC
default is established on the basis of the dis­
pOSition code (DC) and installation options.
Accordingly, the EC parameter is not nor­
mally specified. However, if the user does
include this specification, the xx selected
must be consistent with the queue file proc­
essor (BATCHIO, EI200, RBF, etc.).

Forms code; specifies that a special form must be placed in the
output device.before the named file will be selected from the
queue. xx can be any two alphanumeric characters, but the
combinations null, AA, AB, AC, AD, AD, AE, and AF will give
maximum system efficiency. A value of null results when no
FC parameter is specified.

This is an NOS/BE parameter included for compatibility. It
produces an informative message under NOS.

Implicit remote routing (refer to the following note).

Family name; indicates routing to a remote terminal driven by
EI200 or RBF. Normal default procedures apply if this parameter
is not specified.

60435400 C

IC=xx

ID=xx

ID

PRI=xx

REP=xx

SC=xx

ST=xx

TID

TID=C

TID=xx

UN

UN=xx

60435400 C

Description

Internal characteristics; specifies one of the following.

DIS

ASCII

BIN

Display code

ASCII code

Binary

This parameter is normally not spec ified since its default is
automatically established through the disposition code DC.

Selects local device ID from 0 to 67 (octal default). (This is
similar to the ID specified formally by the SETID control
statement.)

Implicit central site routing (refer to the following note).

File priority. This is an NOS/BE parameter included for
compatibility. It produces an informative message under NOS.

Specifies a file repeat count from 0 to 31 (decimal default).
Values beyond this range are set to zero (default), and an
informative message is issued. The value zero is handled
internally to produce one listing.

Spacing code for the 580-PFC printer. This is a numeric
value from 0 to 77 (octal default).

Station ID. This is anNaS/BE parameter included for
compatibility. It produces an informative message under
NOS.

Implicit remote routing (refer to the following note).

Central site routing. This is an NOS/BE parameter included
for compatibility. Its action is identical to the ID parameter.

Terminal ID. This form of the TID parameter is included
for NOS/BE compatibility. Under NOS, it is processed the
same as TID; however, an informative message is issued
stating that xx is ignored.

Implicit remote routing (refer to the following note).

Specifies the user number of the remote batch user to whom
the named file is routed. The parameter xx is valid only if
it matches the user number of the user performing the route.
The matching is character for character except for those
positions containing an ~:, (refer to the following note).

1-7-33 •

I NOTE I

For jobs of EIOT origin,. the following action is taken.

• Parameter ID, ID=xx, or TID=C will cause routing
to the central site.

• Parameter FM, TID, or UN with no argument will
cause routing to the terminal of origin.

• The omission of FM, TID, or UN will cause routing
to the terminal of origin.

• Parameter FM or UN with legal arguments will
cause routing to the specified terminal.

For jobs of any origin other than E lOT, the following action
is taken.

• Parameters ID, ID=xx, and TID=C will cause routing
to the central site.

• Specifying UN, TID, or FM without parameters will
cause routing to the terminal specified by the job's
FM and UN at the time of the ROUTE call.

• Specifying UN or FM with legal arguments will cause
routing to the selected remote terminal.

If a job is routed to the input queue with an illegal USER control statement, the following
mes sage is issued

DSP - ILLEGAL USER CARD.
SYSTEM ABORT.

and the job is aborted with no error exit proces sing or if submitted from a terminal, the
terminal is logged off. The security count for the user number that did the ROUTE will be
decremented accordingly.

SETID STATEMENTt
The SETID control statement assigns a new identification code for the specified file.

The control statement format is:

SETID(1fn1 =xl ' lfn2 =x2' • • • , lfnn =xn)

lfn. Logical file name
1

x.
1

New identification code for the file (0 through 67.8). This code
must match the device identification code specifled in the EST.
(The installation establishes the device identification codes.)

The identification code allows the user to route his file· to an output device or device
group with the same identification code. This is useful when a print file requires
special forms.

The file lfni must be an input (INFT), local (LOFT), print (PRFT), or punch (PHFT) type
file, or the following message is iss ued.

ILLEGAL FILE TYPE.

t The ROUTE control statement should be used to perform this operation.

• 1-7-34 60435400 C

SKIPEI STATEMENT

The SKIPEI control statement directs the system to position the specified file at the EOI.

The control statement format is:

SKIPEI(lfn)

lfn Name of the file to be positioned

On. magnetic tapes where no EOI is defined, the operation stops at an EOF.

The SKIPEI statement has no effect on a primary file since the file is rewound before every I
operation.

SKIPF STATEMENT

The SKIPF control statement directs the system to bypass, in a forward direction, the
specified number of files from the current position of the named file.

The control statement format is:

SKIPF(lfn, n, m)

Un

n

m

Name of the file to be positioned

Number (decimal) of files to be skipped; if the parameter is
omitted, the system assumes n= 1.

File mode; C for coded, B for binary. If olnitted, the system
assumes the file is in binary mode.

If an EOI is· encountered before n files are bypassed,. file lfn remains positioned at
the EOl.

The SKIPF statement has no effect on a primary file since the file is rewound before every I
operation.

SKIPFB STATEMENT

The SKIPFB control statement directs the system to bypass, in the reverse direction, the
specified number of files from the current position of the named file.

The control statement format is:

SKIPFB(lfn, n, m)

Un

n

m

60435400 C

Name of the file to be positioned

Number (decimal) of files to be skipped; if the parameter is
omitted, the system assumes n= 1.

File mode; C for coded, B for binary. If omitted, the system
assumes the file is in binary mode.

1-7-35

The system does not back8pace past the beginning-of-information (BOI), in the event that
BOl is encountered before n files are bypassed.

I The SKlPFB statement has no effect on a primary file since the file is rewound before every
operation.

I

SKIPR STATEMENT

The SKIPR control statement directs the system to bypass, in a forward direction, the
specified number of logical records from the current position of the named file.

The control statement format is:

SKIPR(lfn, n,l , m)

lfn Name of the file to be positioned

n Number (decimal) of records to be skipped; if this parameter
is omitted, the system assumes n=l.

1 EOR level; 0< 1 <17. If 0< 1 <16, the system assumes I. =0.
If I. =17, n indIcates the number of files to skip rather than records.

m File mode; C for coded, B for binary. If omitted, the system as-
sumes the file is in binary mode.

EOR marks are considered separate records and included in the record count. If the EOI is
encountered before n records are bypassed, file lfn remains positioned at the EOI.

The SKIPR statement has no effect on a primary file since the file is rewound before every
operation. -

SORT STATEMENT

The SORT control statement enables the user to sort a file of line images or statements in
numerical order based on leading line numbers consisting of a specified number of digits.

The control statement format is:

SORT(lfn, NC=n)

lfn

n

-Logical file name of the file to be sorted; lfn may be a local
file or a direct access permanent file.

Number of leading line numbe"r digits the file is to be sorted
on; n < 10. If the NC parameter is omitted, the system
assumes n=5.

In the case of duplicate line numbers, all lines other than the first are considered
correction lines. All lines with the same number are deleted from the file except the
last line encountered.

1-7 -36 60435400 C

For input from a time-sharing terminal, SORT deletes a line image or statement if a
line number is followed by an empty line or a line number is followed by a blank and
a carriage return.

For batch input. SORT deletes a statement or line image if a card containing only the
line number is submitted.

If a line number contains more than n digits. the user can delete the line either by
. entering the first n digits of the line number and pressing the carriage return (terminal
input) or by submitting a card containing only the first n digits of the line number (batch
input).

After the sort, lfn is packed and set at EOI.

The foll.owing SORT error messages may be issued to the user's dayfile.

Message

NO LINE NUMBER ON SORT FILE.

ILLEGAL SORT PARAMETER.

EMPTY SORT INPUT FILE.

WRITE ON READ-ONLY FILE fff
AT nnn.

60435400 C

Description

A line on the input file is missing a line
number or a line exceeded the 150-char­
acter limit.

The SORT control statement is in error.

File lfn contains no data.

The direct access input file was not attached
in write mode (refer to ATTACH Statement,
section 8).

1-7-37 I

I

STAGE STATEMENT

The STAGE control statement causes files to be copied from the specified device to a file
residing on mass storage.

The control statement format is:

STAGE (lfn. PI' P2' • • . • Pn)
lfn Name associated with file to be staged from magnetic tape to

mass storage

p.
1

Any of the following in any order:
NR Do not rewind lfn before beginning operation;

default is rewind.

NU Do not unload lfn after staging operation; de­
fault is automatic unload.

DR Drop job after staging operation.

N=n Copy n files to lfn.

T=xx Stage file lfn from device with EST ordinal
xx. t This parameter is specified only when
tape containing files to be staged is unlabeled
(X format and system default density).

VSN=vsn Specifies the 1- to 6-character volume serial
number of the labeled tape containing the file
to be staged

D=den Tape density:

200

556

800

200 bpi (implies 7-track)

556 bpi (implies 7-track)

800 bpi! cpi (7- or 9-track)

1600 1600 cpi (implies 9-track)

F=format Data format (refer to section 10):

MT
NT

I Internal

X External

SI System Internal t t
7-track tape (default)

9-track tape

If T is not included but VSN is. included, n files are copied from the specified tape. If
. neither T nor VSN is included, a request for lfn is issued to the operator. If DR is
not included, STAGE requests the next set of parameters for the next staging operation
to be entered by the K display on the system console. When lfn is staged to mass
storage, it is designated as a library file. If a library file already exists with the
same name as the file being staged, the system issues the following message.

I DUPLICATE NAME.

t Contact installation personnel for a list of EST ordinals.

I tt NOS/BE system default tape format.

1-7-38 60435400 C

YDUMP STATEMENT
The TDUMP control statement lists a file in octal and / or alphanumeric form.

The control statement format is:

TDUMP(pp P2 •...• Pn)

Pi Any of the following in any order:

I=lfnl Input file name (default is TA PEl)

L=lfn2 Output file name (default is OUTPUT)

o Octal dump only (default is octal and
alphanumeric dump)

A Alphanumeric dump only (default is octal
and alphanumeric dump)

R=rcount

F=fcount

N=lines

NR

Number of records in decimal to dump
(default is dump to EOn

Number of files in decimal to dump (default
is dump to EOI). If F=O. dump continues
until an empty file (double EOF) is en­
countered.

Maximum number of lines in decimal that
can be dumped (if N is omitted. there is
no restriction on the number of lines).

Do not rewind file Ifnl before dump (de­
fault is to rewind Ifnl).

The user has the option of dumping the entire file or of specifying the number of
records. fil~s. or lines to dump.

60435400 C 1-7-39 I

UNLOAD STATEMENT

The UNLOAD control statement releases job attachment .and/or the file space of the specified
file.

The control statement format is:

Ifn.
1

Name(s) of the file(s) to be unloaded

The UNLOAD statement performs the same function as the RETURN control statement (for
additional information, refer to the description of the RETURN statement earlier in this
section). Unlike the RETURN statement, an UNLOAD of a magnetic tape file cannot be used
to decrease the number of tape units scheduled for the job via the RESOURC control
statement. For magnetic tape files, if the previous operation was a write, the UNLOAD
statement causes the following operations to be performed.

1. If the tape is ANSI labeled, the system writes a tape mark, an EOF1 label,
and three tape marks and then unloads the tape.

2. If the tape is unlabeled and the data format specified on the ASSIGN, LABEL,
or REQUEST card is X, S, L, E, B, or F, the system writes four tape marks
and then unloads the tape.

3. If the tape is unlabeled and the data format is I or SI, the system writes a
tape mark, an EOF1 label, and three tape marks and then unloads the tape.

Refer to Tape Management control statements, section 10 for further information about tape
files and to appendixG for a description of an EOF1 label.

UNLOCK STATEMENT

The UNLOCK control statement rescinds the LOCK command and clears the write interlock
bit for the specified file.

The control statement format is:

Ifn.
1

Name(s) of local file(s)

The file must be a local file; if it is not, the following message is issued.

ILLEGAL FILE TYPE.

Common files cannot be unlocked.

I 1-7-40 60435400 C

VERIFY STATEMENT

The VERIFY routine performs a binary comparison of all data from the current position
of the files specified.

The control statement format is:

p.
1

Narne of the first file; if this parameter is omitted, the
system assumes TA PE 1.

Narne of the second file; if this parameter is omitted, the
system assumes TA PE2.

A ny of the following in any order:

N=O Verify terminates on the first empty file en­
countered on either file.

N=x Verify x files; default is N=1.

N Verify terminates when end of information is
encountered on either file.

E=y List the first y errors encountered on the
comparison. If E is omitted, the system
assumes E=!OO.

A

R

C

Same as E=O, no errors are listed.

List errors on file lfn~. If L is omitted, the
system assumes L=OUTPUT.

Abort if errors occur.

Rewind both files before and after the verify.

Use coded file mode for SI, S, and L format
coded tapes.

Whenever words on the two files do not match, VERIFY lists the:

• Record number

• Word number within the record

• Words from both files that do not match

If errors are encountered, the following message is issued to the user's dayfile.

VERIFY ERRORS.

If any pair of lfn!, lfn2' and lfn3 are identical, the following message is issued.

FILE NAME CONFLICT.

60435400 C 1-7 -41

I

I

VFYLIB STATEMENT

I The VFYLIB control statement performs a binary comparison of two specified files after
rewinding both files.

I

The control statement format is:

VFYLIB(lfn
1

, lfn
2

, Ifn
3

, NR)

Ifn
1

Name of the first file; if this parameter is omitted, the system
assumes OLD.

NR

Name of the second file; if this parameter is omitted, the system
assumes NEW.

Name of the file to receive output; if this parameter is omitted,
the system assumes OUTPUT.

If specified, Ifn
1

and Ifn
2

are not rewound.

The VFYLIB program lists

• Replacements

• Deletions

• Insertions

on the output file lfn3. A program is defined as being replaced when the actual binary code
is changed. Information in the prefix (77) table such as last modification date and last
assembly date is skipped in VFYLIB's comparison.

WRITEF STATEMENT

The WRITEF control statement directs the system to write a specified number of file
marks on the named file.

The control statement format is:

WRITEF(lfn. x)

lfn

x
Name of the file to be written on

Number of file marks to be written; if this parameter is
omitted. the system assumes x=1.

WRITER STATEMENT

, The WRITER control statement directs the system to write a specified number of empty
records on the named file.

The control statement format is:

WRITER(lfn, x)

lfn

x

1-7-42

Name of the file to receive the empty records.

Number of empty records to be written; if this parameter is
omitted, the system assumes x= 1.

60435400 C

PERMANENT FILE CONTROL STATEMENTS 8

The permanent file control statements allow the user to utilize the permanent file system. t
The control statements included in this category are:

APPEND

ATTACH

CATLIST

CHANGE

DEFINE

GET

OLD

PACKNAM

PERMIT

PURGALL

PURGE

REPLACE

SAVE

The statements described in the following section allow the user to create permanent files
(DEFINE) and make local files permanent (SAVEl REPLACE). These files can be
accessed (ATTACH, OLD, GET), added to (APPEND), and released (PURGE, PURGALL). I
Requests are directed to a specified auxiliary device by the PACKNAM statement. Certain
parameters can be changed with the CHANGE statement without attaching and redefining
the file or retrieving and saving it. .

Information on permanent files is obtained through the CA TLIST statement. Part of that
information is the permission status of the user as granted by another user by means
of the PERMIT statement.

The following pages list options available on the control statements. Unless otherwise
stated, the options described apply to all of the permanent file control statements. For
a detailed description of permanent file structure, refer to section 2. Errors en­
countered du~ing permanent file control statement processing cause error messages to be
issued to the user's dayfile. For a description of these messages, refer to appendix
B.

t The batch user is unable to access permanent files unless he has included a
USER statement in the job deck.

60435400 C 1- 8-1

I

Keyword

UN=

PW=

PW

CT=

Option

usernum

passwrd

ct

Description

Alternate user number. This parameter is
necessary only if the permanent file involved
resides in another user's catalog. To be able
to access other catalogs, the. user must be
granted explicit permission (refer to the PERMIT
control statement), the file must be a sepliprivate
or public file, or the user must have automatic
permission. A user has automatic permission to
files in catalogs of other users if his user number
contains asterisks. and all nonasterisk characters
match the other user's user number.

The user has the option of specifying a 1- to-7-
character password for a file. This password
must be specified whenever alternate users access
thje file.

The user has the added security of specifying
a 1- to 7-character password for a file by
including it as a single-line record in the
INPUT file. This password must be specified
whenever alternate users access the file.

Permanent files fall into three categories which
specify the method of access. This option must
be selected when the file i~ saved or defined.
The categorJes are:

P Private files are available for
or access only by the originator or
PRIVATE those to whom the originator has

explicitly granted permission (refer
to the PERMIT control statement).

S Semiprivate files are available for
or access by all users who know the
SPRIV file name, user number, and pass­

word. The system records in the
originator's catalog the user num­
ber of each user who accessed the
file, the number of accesses, and
the date and time of the last access .

. PU Public files t are available for
or access by all users who know the
PUBLIC file name, user number, and pass-

word. The system records the
number of times the file was
accessed but does not record user
numbers or the last access date
and time.

,"CT =LI can also be used to specify public files.

1-8-2 60435400 C

Keyword

M=

Option

m

Description

File or user permission mode:

W Allows the user to write, read,
or append, execute, modify, and/ or
WRITE purge the file. This mode can be

specified for direct or indirect
access files.

M Allows the user to modify, append,
or read, and/or execute a direct
MODIFY access file. Adding new informa­

tion within the existing boundaries
of the file is legal but the file
size must be maintained.

A Allows the user to append infor-
or mation to the end (EO!) of the file.
APPEND This mode can be specified for

direct or indirect access files.

R Allows the user to read and/or
or execute the file. This mode can
READ be specified for direct or indirect

access files.

RM Allows the us er to read and/ or
or execute a direct access file with
READMD the implication that another user

may currently be accessing the same
file in MODIFY mode. This
mode can be specified only for
direct access files.

RA Allows the user to read and/ or
or execute a direct access file with
READAP the implication that another user

may currently be accessing the
same file in A PPEND mode. This
mode can be specified only for
direct access files.

E Allows the user to execute the file.
or If the file is attached to the user's
EXECUTE job in EXECUTE mode, the file

must be in absolute format. This
mode can be specified for direct
or indirect access files. Relocat­
able files with EXECUTE perm iss ion
may be loaded and executed only via
a stand-alone file name call (such
as LOO) which is not preceded by
a loader control statement.

N Removes permission previously
or granted via PERMIT control
NULL statements. This mode can be

specified for direct or indirect
access files.

60435400 A 1-8-3

I

I

I

Keyword

R=

S=

PN=

Option

r

space

packname

Description

Specifies the type of device on which the permanent
file resides or is to reside; r can be any of the
following.

r

DE

DIi

DJi

DP

MDi

Device

Extended Core Storaget

844-21 Disk Storage Subsystem
(1:5.i:5.8)

844-41/44 Disk Storage Subsystem
(1:Si:S8)

Distributive Data Path to ECSt

841 Multiple Disk Drive (1~ i~ 8)

The R keyword can be used in two ways.

1. It can be used on the DEFINE control statement
to specify the family device on which the direct
access permanent file is to reside.

2. It can be used in conjunction with the PN
and NA keywords on any permanent file con­
trol statement (including DEFINE) to identify the
auxiliary device on which the permanent file
resides or is to reside. R is required only
if the desired device has a device type
different from that of the default device type
and the' installation has defined the desired
device as removable. If PN and NA are
specified but R is not specified, the system
default device type is used. If the specified
devic.e type cannot be recognized or does
not exist in the system, the following
message is issued to the user's dayfile.

ILLEGAL DEVICE REQUEST, AT nnn.

Specifies the amount of space in decimal PRUs
desired for the direct access file. Refer to the
DEFINE control statement.

A 1- to 7-character pack name used in conjunction
with the R keyword to identify the auxiliary device
to be accessed in the permanent file request. This
parameter is specified only when the file to be accessed
resides on an auxiliary device. If the device is
currently not available and the NA keyword was not
specified, the following message is issued to the
user's dayfile.

DEVICE UNAVAILABLE, AT nnn.

An auxiliary device is a mass storage device that
supplements the normal family of permanent file
devices. A RESOURC control statement must be
included in any job that uses two or more disk
packs concurrently.

I t The job must be of system origin or the user must be validated for system origin privileges.

1-8-4
60435400 C

Keyword

NA

ND

Option Description

The NA keyword can be used in two ways.

1. Normally, if the user attempts to access
a file that is interlocked or if an error
occurs in an attempt to process the file,
the system aborts the job. With the
NA option. the user can bypass a job abort
and continue processing. If lfn is busy and
the NA option is specified on an ATTACH
control statement, the system automatically
suspends the job until the file becomes avail­
able. If NA is specified and an error other
than pfn BUSY occurs in processing file
lfni, the system issues the appropriate
error message to the user's dayfile and then
continues with file lfni+ 1. If the error
occurred on the last file specified on the
statement. the system continues with the
next statement.

2. If the user requests an auxiliary device
that is currently not available, the system
aborts his job. The NA keyword enables
him to bypass this abort and direct the
system to make the desired device available.

The ND keyword prevents releasing of the user's
working files upon processing of an OLD control
statement.

Several files, can be accessed with one control statement. A slash (/) is used to separate
the files being accessed and the options described previously. The special options
are order-independent and are indicated by the keywords described. If special options
are specified on the control statement, they apply to all files that appear on the statement.

APPEND STATEMENT

The APPEND control statement allows the user to add supplementary information to an
existing indirect access file.

The control statement format is:

APPE ND (pfn, IfnI, Ifn2' ••• ,lfnn/PW=passwrd, UN=usernum, PN=packname, R=r, NA)

pfn Name of the indirect access permanent file to which the
IO,cal files are to be appended

Ifni Name(s) of local file(s) to be appended to pfn

The logical structure of the two files is retained; that is, EaRs and EOFs are appended
as well as data. If the file is appended to a file in an alternate user's catalog, a
password must be supplied if one is required.

60435400 A 1-8-5

ATTACH STATEMENT

The ATTACH control statement allows a user to acces~ a direct access file.

The control statement format is:

ATTACH(Ifn l =pfnl' lfn2 =pfn.2' ••. ' Ifnn=pfnn!UN=usernum, PW=passwrd, M=m,
PN=pacKname, R=r, NA)

Ifni Local file name given to the direct access file while it is attached
to the user's job. A working copy is not generated

m

since user access is made directly to the permanent file.
Thus, Ifni is used only when it is desirable to reference the
attached file by a name other than its permanent file name,
pfni·

Name of direct access file to be attached. If pfni is omitted,
the system assumes pfni =lfni.

File or user permission mode, where m can be W, M, A, E,
R, RM, or RA. If m is omitted, the system assumes m is
R. This option must be specified by all users, including the
originator, if the file is to be modified or new information is
to be added to the file. If pfni is attached in W mode, the
date is recorded as last modification date even if the file
was not altered.

A read/write interlock controls multiple access of a direct access file. The main purpose of
this interlock is to ensure that only one user at a time writes on the file; however, it is
possible for several users to read a file simultaneou~ly.

Table 1-8-1 gives combinations of multiple access. The left column specifies the current
access status of the file, and the top row indicates the type of access a user is requesting on
an ATTACH statement with the M parameter. The entries in the table are the access modes
actually granted. The access a user is granted is contingent on having been permitted that
mode of access by the creator of the file.

1- 8-6 60435400 C

TABLE 1-8-1. COMBINATIONS OF MULTIPLE ACCESS

Current
Access Requested Access

Free W M A R RM RA E

W Busy Busy Busy Busy Busy Busy Busy

M Busy Busy Busy Busy M/R Busy Busy

A Busy Busy Busy Busy AIR AIR Busy

R Busy Busy Busy R R R R

RM Busy M/R AIR R R R R

RA Busy Busy AIR R R R R

E Busy Busy Busy R R R R

NOTES:

W. M. A. R. RM. RA. and E have the values described under the M= keyword.

Busy indicates the requested access is not allowed while the current access is in
effect.

AIR is the access condition in which one user has attached the file in append
mode. and one or more other users have attached it in read mode.

M/R is the access condition in which one user has attached the file in modify
mode. and one or more other users have attached it in read mode.

The user should return a file as soon as possible since this usually increases the
availability of the file to other alternate users.

If an auxiliary device has been previously specified by a PACKNAM statement. the
system attempts to attach pfn. from the auxiliary device rather than the normal system
devices. 1

60435400 C 1-8-7 •

CA TLIST STATEMENT

The CATLIST control statement lists information about the user's permanent files or
those permanent files he can access in the catalogs of alternate users.

The control statement format is:

CATLIST(LO=p. FN=pfn. UN=usernum. PN=packname. R=r, L=lfn. NA. DN=dn)

p One of the following list options:

F Selects a listing of pertinent information about
each file in the user's catalog. If an alternate
user number is specified (UN option), the user
obtains a listing of all files that he can access
in the alternate user's catalog. Note that the
password for files in an alternate user's catalog
is not included in the listing. The password to
files iIi an alternate user's catalog must be ob­
tained directly from that user.

FP Selects a listing of permission information
recorded for each alternate user of a specified
file in the user's catalog. This option requires
that a file name be specified (FN option). If
an alternate user number is specified (UN option).
only the permission information for that user of
the specified file is listed.

The user numbers listed include those that have
been granted explicit permission to the file
(private file only) and those that have accessed
the file because of' implicit permission (semiprivate
files only). t

o
(zero)

p

Selects a short list that includes only
the names of the files in the user's
catalog. If an alternate user number
is specified (UN option). the user ob­
tains only the names of the files that
he can access in the alternate user's
catalog. If no LO keyword is speci­
fied. the system assumes. this value.

Selects a short list that indicates only
the user numbers of alternate users
who have accessed the specified pri­
vate or semiprivate file. This option
requires that a file name be specified
(FN option). .

t User numbers are not recorded for accesses to public files.

I 1-8-8 60435400 C

pfn

usernum

packname

lfn

60435400 C

Permanent file name. This option specifies that catalog
information is desired only for this permanent file. This
parameter is required when listing permit information
(LO=FP, LO=P). If the short list options are selected
(LO =0, LO =P), the message

pfn FOUND, AT nnn.

is issued if the file (or user number) is located. The
message

pfn NOT FOUND, AT nnn.

is issued if the specified file (or user number) is not located.

User number. This parameter has two purposes.

1. For LO=F and LO=O.. Indicates the alternate catalog
for which the user desires catalog information.

2. For LO=FP and LO=P. Indicates the permission
information recorded for the specified alternate user •

. This parameter specifies an auxiliary device that contains
catalog information for all users with files on that device.
The PN keyword must be specified if the user wishes to
obtain the following information from his catalog on the
specified auxiliary device.

• Pertinent information about each file (LO =F)

• Only the name of each file (LO=O)

• Permission information for each alternate user that
has accessed a specific file (LO=FP)

• Only the user number of each alternate user that
has accessed a specific file (LO=P)

The PN parameter can also be specified to allow alternate
users to obtain a list of files they can access on the auxiliary
device, as well as pertinent information about each file.

Output file name. This is the name of a local file to which
the CATLIST information is written. If this parameter is
omitted, the system assumes L=OUTPUT. If lfn exists and
is positioned at BOI, the contents of that file is purged be­
fore the .CATLIST information is written. However, if lfn
exists and is positioned at Ear, the CATLIST information is
appended to the file as a new logical record.

1-8-9

NA

dn

No abort option. CATLIST continues processing if errors
are encountered during processing.

Device number (O through 778). List file residing on
specified device number dn.

If no entries are present in the specified catalog, the message

EMPTY CATALOG.

is issued to the uSt.rts dayfile.

CHANGE STATEMENT
The CHANGE control statement allows the originator of a direct or indirect access file to
alter any of several parameters without having to attach and redefine the file or re­
trieve and save it.

The control statement format is:

CHANGE {nfn=ofn/ CT=ct, M=m, PW=passwrd, PN=packname, R=r, NA)

nfn

ofn

New permanent file name

Old permanent file name. If no name change is desired,
only ofn is specified.

The CT, M~, and PW keywords should be specified only if a change in the value asso­
ciated with that keyword is desired. To clear the password for an existing file, the
user must set PW=O., The PN and R keywords cannot be used to specify a new auxiliary
device. They are used only to specify the device on which' ofn resides. CHANGE also
updates the l~st modification date and last access date for the specified file.

The following messages may be issued to the user's dayfile in response to a CHANGE
request.

I 1-8-10

Message

ofn NOT FOUND~ AT nnn.

nfn ALREADY PERMANENT,'
AT nnn.

Description

The specified permanent file, ofn, was not
found in the user's catalog.

The new permanent file, nfn, already exists
in the user's permanent file catalog.

60435400 C

DEFINE STATEMENT
The DEFINE control statement allows the user to define direct access permanent files.

The control statement format is:

DEFINE(Ifnl =pfnl' Ifn2=pfn2' •.. , Ifnn=pfnn/PW=passwrd, CT=ct, M=m, R=r,
S=space, PN=packname, NA)

Ifni If DEFINE is to be used to create an empty direct access
permanent file, Ifni is specified only if the user desires to
reference the file by a name other than its permanent file name.
If DEFINE is to be used to define an existing local file as a

pfn.
1

r

direct access file, Ifni is the name of the local file. Also,
if Ifni exists, its position is not altered.

Permanent file name. If pfni is omitted, the system assumes
Ifni =pfni.

Type of device on which the permanent file is to reside. The
·device must be a permanent file mass storage device on which
direct access files are allowed.

The user can either create an empty permanent file or define an existing local file as
a direct access file. If the user releases the file and wishes to access "it at some
time in the future, the ATTACH control statement must be included.

If Ifni does not exist, the device on which pfni resides depends on the r and space
parameters.

r

Specified

Specified

Not specified

Not specified

space

Not specified

Specified

Specified

Not specified

Residency

The file resides on the device of type r with
the most space available.

The file resides on the device of type r with
the most space available, provided that de­
vice has as many PRUs available as specified
by the space parameter.

The file resides on the device with the most
space available, provided that device has as
many PRUs available as specified by the
space parameter.

The' file resides on the device with the most
space available.

If an auxiliary device has been previously specified by a PACKNAM statement, pfni resides
on that auxiliary device rather than a system device.

If the optional parameters are omitted, the system assum es the following values.

Keyword Default

PW

CT

M

PN

60435400 C

None

PRIVATE

WRITE

None

1-8-11 I

If the S option is selected and no device has the specified amount of space available, the
request is aborted and the following message is issued to the user's dayfile.

PRUS REQUESTED NOT AVAILABLE, AT nnn.

Unused space is not guaranteed to be available if the user attempts to expand the file
at a later time.

If Ifni already exists on a device other than that specified by r. or an illegal device
is specified. the system issues the following message to the user's dayfile.

DIRECT ACCESS DEVICE ERROR. AT nnn.

GET STATEMENT

The GET control statement enables the user to retrieve a copy of file pfni for use as a
local file.

The control statement format is:

GET(lfn1 =pfn1" lfn2=pfn2" ••• " lfnn=pfnn/UN=usernum" PW= passwrd. PN=packname,
R=r" NA)

Local file name g:iven the file while in use

Permanent file name; if pfn. is omitted, lfn. = pfn
1
•

1 1

If the request is made with no parameters specified, the user's primary file is assumed.

Each pfn specified must be an indirect access file. File Ifni is returned to the system
if it is present before this command is issued even if an error is encountered in proc­
essing the cOll?-mand. The new file is rewound. No interlock is provided to prevent
other users from obtaining working copies of the same file simultaneously. If the name
of the user's current primary file is specified as an Ifn, the corresponding pfn is made
the new primary file and any subsystem associated with it becomes the user's new cur­
rent time-sharing subsystem.

If the request is for a file in another user's catalog (UN option specified), the per­
mission mode is that which the user has been permitted for private files or that speci­
fied in the catalog for semiprivate and public files.

If an auxiliary device has been previ~usly specified by a PACKNAM statement, the sys­
tem attempts to retrieve the copy of pfni from the auxiliary device rather than the
normal system devices.

OLD STATEMENT

The OLD control statement retrieves a copy of a permanent file and makes it the
. primary file.

The control statement format is:

OLD(lfn=pfn/UN=usernum, PW=passwrd, PN=packname, R=r, NA, NO)

lfn Local file name given the file while in use

pfn Permanent file name. If pfn is omitted, lfn=pfn.

I 1-8-12 60435400 C

The OLD statement performs the same operation as the GET statement and additionally
makes lfn the primary file. Any currently existing primary file is released. All
working files are also released unless the NO parameter is specified.

If an auxiliary device has been specified previously by a PACKNAM statement, the
system attempts to retrieve the copy of pfn from the auxiliary device rather than the
normal system devices.

Refer to the note in PRIMARY Statement, section 7 for use of primary file types. I

PACKNAM STATEMENT

The PA CKNA M control statement directs subsequent permanent file requests to the
specified auxiliary device.

The control statement format is:

PACKNAM(PN=packname)

or

PACKNAM(packname)

packname A 1- to 7-character name used to identify the auxiliary
device to be accessed in subsequent permanent file requests

PACKNAM allows the user to omit the PN keyword from requests for files that reside
on the specified device. However # if permanent files on another auxiliary device are
to be accessed# the PN keyword can be specified in the request or another PACKNAM
request can be issued. Refer to Device Residence, section. 2 for information concerning
auxiliary permanent file devices.

The user cannot access permanent files residing on the normal system devices while
the PACKNAM request is in effect. To access these files, he must include a PACK­
NAM card in either of the following formats.

PACKNAM

or

PACKNAM(PN=O)

60435400 C 1-8-13

I

PERMIT STATEMENT

The PERMIT control statement allows a user to explicitly permit another user to access a
private file in his permanent file catalog.

The control statement format is:

PERMIT(pfn, usernuml =ml' usernum2=m2, ••• , usernumn.~mn /PN=packname, R=r, NA)

pfn Permanent file name

usernumi User number to be permitted access to pfn

Permitted mode of access. If mi is omitted, the system
assumes mode R.

Ifpfn is a public file, the following message is issued.

PFM ILLEGAL REQUEST, AT nnn.

PURGALL STATEMENT
The PURGALL control statement purges all permanent files in the user's catalog that
satisfy the criteria specified by the parameters.

The control statement format is:

PURGALL(CT=ct, AD=ad, MD=md, CD=cd, DN=dn, Ty=ty, TM=tm, PN=packname, R=r, NA)

ct

ad

md

cd

dn

ty

tm

File category

Last access date; format of date is yymmdd

Last modification date; format is yymmdd

Creation date; format is yymmdd

Device number (0 through 778). The device number is
assigned during system configuration time when the device
is defined. It uniquely identifies a device within a family. t
File type:

I
or
INDIR

D
or
DIRECT

A
or
ALL

Purge all indirect access files

Purge all direct access files

Purge all files

If this parameter is omitted but other parameters are
specified, the system assumes ty is ALL. If no other
parameters are specified and the user wishes to purge
all files, he must specify TY=A.

Time of day on the date specified by ad, md, or cd
parameter. The time of day is expressed in the format
hhmmss.

t Refer to section 2 for further information about families of permanent file devices.

1-8-14 60435400 C

packname Name of auxiliary device on which the files to be purged
reside. The PN option cannot be selected if a device
number was specified.

r Type of auxiliary device on which the files to be purged
reside. The R option cannot be selected if a device
number was specified.

The AD. MD, and CD keywords are used to purge any files whose last access, last
modification, or creation occurred before the specified date. To purge all files in
his catalog, the user must enter:

PURGALL(TY=A)

CT. DN, TY. TM. and either AD. MD. or CD may be entered simultaneously.

PURGE STATEMENT

The PURGE control statement allows a user to remove a file from the permanent file devicE..

The control statement format is:

PURGE(pfnl. pfn2' ...• pfnn/uN=usernum, PW=passwrd. PN=packname. R=r. NA)

Permanent file name

If the request is made with no parameters specified, the user's primary file is assumed.

When a PURGE command is issued for a direct access file which is not being used.
the file is purged and the permanent file catalog altered accordingly. If the direct
access file is in use. the catalog is altered to reflect purging of the permanent file
but the actual file is not purged until the last user returns it.

To purge a file in an alternate user's catalog, the user must have write permission
or the file must be semiprivate or public with write mode. If pfnl does not exist.
the following message is issued. -

pfn NOT FOUND, AT nnn.

REPLACE STATEMENT

The REPLACE control statement enables the user to place a copy of a local file in the
permanent file system as an indirect access file.

The control statement format is:

REPLACE(lfnl =pfnl' lfn2=pfn2' •••• lfnn=pfnn/UN=usernum. PW=p?-sswrd,
PN=packname, R=r, NA)

Local file name

Permanent file name. If pfni is omitted, lfni=pfni'

If the request is made with no parameters specified, the user's primary file is assumed.

If pfni already exists, it is purged and replaced by the new file. The new file is in
the same category as the file it replaced. If pfni does not exist, the new file is saved
as a private file. Permission information and alternate user access data for the file
are not lost when a file is replaced.

A user who has been granted write permission to another user's file can replace that
file only if he is validated to create indirect access permanent files (refer to LIMITS
control statement, section 6.)

60435400 C 1-8-15 I

I

SAVE STATEMENT

The SAVE control statement allows the user to retain a copy of a local file as an indirect
access file.·

The control statement format is:

SAVE (lfnl =pfnl' lfn2=pfn2, .•. , lfnn=pfnn/PW=passwrd, CT=ct, M=m, PN=packname,
R=r, NA)

Local file name

Permanent file name. If pfni is omitted, the system
assumes lfni=pfni_

If the request is made with no parameters specified, the user's primary file is assumed.
If the name of the user's current primary file is specified as an Ifn, the user's current
subsystem is stored in the file's catalog entry.

The local files are rewound when the save operation is completed. If the optional
parameters are omitted, the system assumes the following values.

Keyword Default

PW None

CT PRIVATE

M WRITE

PN None

If an auxiliary device -has been previously specified by a PACKNAM statement, the
system saves pfni on the auxiliary device rather than a normal system device.

If pfni already exists in the user's catalog, the following message is issued.

pfn ALREADY PERMANENT, AT nnn.

1-8-16 60435400 C

LOAD/DUMP CENTRAL MEMORY
UTILITY CONTROL STATEMENTS

9

The load/ dump central memory utility control statements allow the user to transfer infor­
mation that resides in his job field length to a peripheral device or to transfer infor­
mation from that device into central memory. The following statements are included in
this category.

DMP

DMD

LBC

LaC

PBC

RBR

WBR

I NOTE I
For information concerning security restrictions
associated with the use of these control state­
ments~ refer to Security Control~ section 3.

The DMP and DMD control statements dump central memory in octal representation and / or
display code equivalences. These statements are particularly helpful in creating dumps for
debugging purposes. (Refer to Debugging Aids, section 13.) Other transfers of data from
central memory use the PBC statement which dumps a binary record to PUNCHB and the
WBR statement which writes a binary record on a specified file.

Data is loaded to central memory by the LBC, LaC, and RBR statements. The LBC con-
trol statemen,t is useful in loading binary data in an unknown format. All numeric parameters
may be expressed in octal, (postradix is B) or decimal (postradix is D) notation. If no I
radix is spec ified~ octal is assumed.

DMP STATEMENT

The DMP control statement requests a dump on file OUTPUT of central memory in four
words per line.

The control statement format- is:

DMP(fwa~ lwa) or

DMP(lwa) or

DMP.

fwa

lwa

First word address of memory to be dumped; fwa is relative
to RA. If fwa is absent~ dump mode depends on presence or
absence of lwa.

Last word address plus 1 of memory to be dumped; lwa is
relative to RA. If lwa alone is present, DMP assumes
fwa=O. If neither fwa nor lwa is present, DMP dumps the
exchange package and 408 locations before and after the
program address register in the exchange package.

The DMP routine dumps on fUe OUTPUT central memory according to the DMP call
parameters in four words per line. If, lines are duplicated, they are suppressed with
the following notation.

DUPLICATE LINES.

60435400 C 1-9-1

I

I

The DMP statement must immediately follow the program to be dumped, except that
another DMP, DMD, or EXIT statement may intervene.

Dumping will always stop at FL if lwa > FL. If either fwa or lwa is nonnumeric, the
request is interpreted as:

DMP.

If fwa ~ .FL, fwa is set to FL-108• If both fwa and lwa > FL, fwa is set· to FL-108
and lwa IS set to FL. If fwa=lwa, the system adds 108 to lwa and proceeds with the
operation. If fwa ~ 4000008, the first dump address is fwa-4000008, memory from
the first dump address through lwa is dumped, and the job is aborted. If fwa ,2:.lwa,
the system issues the following message to the user's dayfile.

DUMP FWA .GE. LWA+1.

Since the user's FL is not saved between commands entered from a time- sharing
terminal, the only way to use DMP from a terminal is to call a procedure file. A dump
from a terminal is formatted for 72-column output.

DMD STATEMENT

The DMD control statement requests a dump similar to that of the DMP statement but
additionally contains the display code equivalences to the right of the octal representations.

The control statement format is:

DMD(fwa,.lwa) or

DMD(lwa) or

DMD.

fwa

lwa

First word address of memory to be dumped; fwa is relative
to RA. If fwa is absent, dump mode depends on presence·
or absence of lwa.

Last word address plus 1 of memory to be dumped; lwa is
relative to RA. If lwa alone is present, DMD assumes
fwa=O. If neither fwa nor lwa is present, DMD dumps the
exchange package and 408 locations before and after the
program address in the exchange package.

I The DMD statement is not allowed from a time- sharing terminal.

LBC STATEMENT

The LBC control statement is intended for loading binary data of unknown format.

The control statement format is:

LBC(addr)

addr Address relative to RA at which binary load begins; if
addr is omitted, 0 (RA) is assumed.

LBC reads only one record from file INPUT. The user must make an LBC call for each
record of data to be loaded. If addr is specified in the program call, binary data is loaded
beginning at that address; otherwise, loading begins at the reference address (RA).

1-9-2 60435400 C

The following messages may be issued to the user's dayfile in response to an LBC
card.

LBC ARGUMENT ERROR.

LBC FWA .GE. FL.

RECORD TOO LONG.

Loe STATEMENT

The load address, addr, is nonnumeric.

The load address is greater than or equal
to the user's field length.

The record is too long for available memory.
Available memory is filled and the excess
data is skipped.

The LaC control statement calls the LOC program and specifies address parameters used by
LOC to read octal line images from file.INPUT and enter them in CM.

The control statement format is:

LOC(fwa,lwa)

LOC(lwa)

LaC.

fwa

lwa

or

or

First word address of an area to clear (zero) before loading
correction statements. If fwa is absent, LOC assumes O.

Last word address plus 1 of the area to be cleared. If lwa
is absent, LaC assumes O.

The correction statement images consist of octal address and data fields. The address field
specifies the location to be corrected, and the data field contains the data to be placed in
that location. Both fields may start at any column as long as the address precedes the data.
The address field·consists of a one- to six-digit address. If it is five characters or less, it
is separated from the data field by a nonoctal character (for example, a blank). If it is six
characters, no separator is required.

The data field consists of 1 to 20 octal chracters. If it is less than 20 characters, it
is terminated by a nonblank, nonoctal character and is stored right-justified. If it is
20 characters, no terminator is required. Embedded blanks in the data field are ignored

The following messages may be issued to the user's dayfile.

LaC ARGUMENT ERROR.

LaC RANGE ERROR.

ADDRESS OUT OF RANGE,
aaaaaa.

Either fwa or lwa is nonnumeric.

Either fwa is greater than lwa or lwa is greater
than FL.

The address aaaaaa on a correction statement is
greater than or equal to the user's field length.
The correction statement is ignored and LOC
continues.

If both addresses are specified and both are nonzero, storage is cleared from fwa to lwa
and the octal line images are loaded at the specified addresses. LaC can be called to clear
storage by providing an empty (zero-filled) record on file INPUT.

60435400 A

PBC 51 A 1EMEN1

The PBC routine writes one record from the specified area of CM to file PUNCHB.

The control statement format is:

PBC (fwa, lwa)

PBC(lwa)

PBC.

fwa

lwa

or

or

Address relative to RA at which the binary deck begins; if this
parameter is omitted, the PBC operation depends upon the
presence or absence of lwa.

Last word address plus 1 of the binary deck. If lwa alone
-is present, PBC assumes that fwa=RA. If lwa=fwa, and a
nonzero value is specified, PBC adds 108 to lwa. If fwa
and Iwa=O or are omitted, RA contains lwa in the lower 18
bits. If the upper 12 bits of RA are 77008, lwa is the lower
18 bits of the location following the prefix (77) table plus the
length of the prefix table.

CM is not altered by PBC.

The following messages may be issued to the user's dayfile.

PBC ARGUMENT ERROR.

PBC FWA .GT. LWA.

PBC RANGE ERROR.

Either fwa or lwa is nonnumeric.

The fwa parameter is greater than lwa.

The lwa parameter is greater than or equal
to the user's field length.

RBR 51 A1EMEN1
The RBR routine loads one binary record from a specified file.

The control statement format is:

RBR(n, name)

n

name

1-9-4

n is us ed in constructing ,the name of the file containing
the binary record to be read. If n is less than four char­
acters and is numeric, TA PEn is the file name. If n
contains a nonnumeric character or is four or more char­
acters long. n itself is used as the file name. If n is
absent, TA PE is the file name.

A 1- -to 7 - character name used in a record prefix.

60435400 A

The RBR routine loads one binary record from the specified file into central memory ~.
starting at RA. If the name parameter is included, a record prefix is placed in central­
memory starting at RA. The record itself follows. The following is the format of the i

record prefix.

RA

RA+1

RA+2

RA+3

RA+17

RA+20 8

59 53 47 35 17 o
77 I 00 I 0016 I 0 length

name ()

date (yy/mm/dd.)

0

..:>- ~';J'

0

5200 I 0 length 1

length Record length including the prefix

length1 Record length minus words RA through RA + 178

If the record is too long for available memory, memory is filled, excess data is skipped,
and the following message is issued to the user's dayfile.

RECORD TOO LONG.

WBR STATEMENT

The WBR routine writes a binary record from CM to a file at its current position.

The control statement format is:

WBR(n, rl)

n

rl

n is used in constructing the name of the file on which the
binary record is to be written. If n is less than four
characters and is numeric, T A PEn is the file name. If
n contains a nonnumeric character or is four or more
characters long, n itself is used as the file name. If n
is absent, TA PE is the file name.

Record length in words. If rl is 0 or absent, the length
is taken from the lower 18 bits of RA.

WBR begins writing from RA.

The following messages may be issued to the user's dayfile.

WBR ARGUMENT ERROR.

RECORD TOO LONG.

60435400 C

The rl parameter is nonnumeric.

The rl parameter is greater than or equal to
the user's field length.

1-9-5

TAPE MANAGEMENT 10

This section is devoted primarily to the control statements necessary to create and manage
fUes on magnetic tape. Following the control statements are descriptions of the various
types of tape formats available to the user.

The control statements described in this section are:

ASSIGN

BLANK

LABEL

LISTLB

REQUEST

VSN

The ASSIGN, LABEL, and REQUEST control statements cause files to be assigned to tape
units or devices. The REQUEST statement requires operator action unless the VSN is
specified. In this case, if the tape has already been mounted, assignment is automatic.
LABEL and ASSIGN also cause automatic assignment.

ANSI tape labels can be read using the LISTLB statement and blank-labeled for installation
control using the BLANK statement.

The control statements available to the user for assigning a file to magnetic tape are also
used to create new and access existing 7 - and 9-track labeled and unlabeled tapes.
The following terms are used in describing these statements.

Volum,e

Volume serial number

Block

Noise

Label

Tape mark

Owner

NOS written tape

60435400 ·A

Reel of magnetic tape

Number that uniquely identifies a reel of tape

One physical record unit (PRU); that is, a group of
contiguous characters recorded on and read from
magnetic tape as a unit.

Any block less than the minimum acceptable block size
is considered noise and discarded by the system.

Field of characters that identifies and/or delimits a
volume or file. Labels may be written in ANSI standard
or nonstandard format. ANSI labels are SO-character
blocks recorded at the beginning of a volume (VOL 1),
the beginning of a file (HDR1), the end of a file (EOFl),
and the end of a volume (EOV l)~ Labels which do not
conform to ANSI standards in format and / or content
are defined as nonstandard.

Special configuration recorded on magnetic tape indicating
the boundary between files and / or labels

Owner of a NOS written tape identified in the VOLl
label by the combination of his family name and
user number

Tape with ANSI labels written by NOS and identified
as such in the system code field of each HDR1,.
EOF1, and EOVl label

1-10-1

The format and contents of ANSI labels are described in appendix G. A RESOURC
control statement must be included in any job that uses two or more tape units con­
currently.

The following is a list of the parameters that may appear on one or more of the tape
management control statements.

Keyword

C=

CB

CK

CR=
or
C=

CV=
or
N=

Parameter

ccount

cdate

conv

Default

None

Refer to
REQUEST
statement.

Refer to
REQUEST
statement.

Current date

Installation
parameter

Valid On

ASSIGN
REQUEST

ASSIGN
LABEL
REQUEST

ASSIGN
LABEL
REQUEST

LABEL

ASSIGN
BLANK
LABEL
REQUEST

Description

Character count. Specifies
the maximum size block (in 6-
bit characters) that may be
read or written. This param­
eter applies only to E. B. and
F data formats (refer to the F
keyword).

Specifies that lfn is to be used
as a checkpoint fUe. Each
time a checkpoint dump is
taken. the new information is
written at the BOI of lfn.

Specifies that lfn is to be used
as a checkpoint fUe. Each
time a checkpoint dump is
taken. the new information is
written at the previous EOI of
lfn.

Creation date in the form yyddd
where 1~ ddd~ 366. Creation
date is meaningful only on read
operations; on write operations.
the current date is always used
(refer to appendix G. HDR 1
label).

Specifies the conversion t mode
for 9 -track tapes:

AS ASCII/display code
conversion

US Same as for AS
EB EBCDIC/display code

conversion

For unlabeled 9 -track I or SI
(internal) format tapes. con­
version is always forced to
ASCII.

t Refer to ASCII/Display Code and EBCDIC/Display Code Conversion. appendix A.

I 1-10-2 60435400 C

Keyword Parameter Default Valid On Description

D= den Installation ASSIGN Specifies tape density:
parameter BLANK·

LO 200 bpi (7 -track)
LABEL HI 556 bpi (7 -track) REQUEST HY 800 bpi (7 -track)

HD 800 cpi (9-track)
PE 1600 cpi (9 -track)
200 200 bpi (7 -track)
556 556 bpi (7 -track)
800 800 bpi (7 - or 9 -track)

1600 1?00 cpi (9 -track)

E= gvn Refer to LABEL 1- to 2 -d igit generation version
appendix G. number (refer to append ix G.

HDR 1 label).

F= format I format for LABEL ASSIGN Specifies the data format
statement. I format LABEL I Internal for ASSIGN statement REQUEST X External if V SN keyword is

B Blocked included; otherwise. E Line image default is X format.
I format for REQUEST S Stranger

statement if VSN L Long block stranger

control statement has SI System internal t
been processed; other- F Foreign

wise. default is X
format.

FA= f~ Unlimited access BLANK File accessibility. One char-
LABEL acter that indicates who has

access to the labeled file (refer
to appendix G. HDR 1 label).

A Only the owner of the
NOS written tape can
access the file.

omitted FA omitted indicates
unlimited access.

other All future accesses to
this tape must specify
this character as the
fa parameter.

File accessibility is not checked
for system origin jobs.

Fe= fcount None ASSIGN Frame count. Specifies the
LABEL maximum size block (in frames)
REQUEST that may be read or written.

This parameter applies only to
E, B. and F data formats
(refer to the F keyword).

t NOS/BE system default tape format.

60435400 C 1-10-3 I

Keyword Parameter Default Valid On Description

FI= fileid Refer to LABEL A 1- to 17 -character file iden-
or appendix G. tifier recorded in HDR 1.
L=

G= genno Refer to LABEL 1- to 4-digit generation num-
appendix G. ber (refer to appendix G,

HDR 1 label).

HD Installation ASSIGN 800 -cpi tape density (implies
parameter REQUEST 9 -track tape)

HI Installation ASSIGN 556 -bpi tape density (implies
parameter REQUEST 7 -track tape)

HY Installation ASSIGN 800 -bpi tape density (implies
parameter REQUEST 7 -track tape)

L= out OUTPUT LISTLB Specifies the file on which the
labels are to be listed.

LB= KL for LABEL state- ASSIGN Specifies whether the tape is
mente KL for ASSIGN LABEL to be treated as labeled or un-
statement if VSN key- REQUEST labeled.
word is included; KU NOS unlabeled.
otherwis~ default is
KU. KL for RE- KL NOS labeled. The tape
QUEST statement if is treated as having
VSN keyword is.,in- ANSI labels. If the tape
cluded or VSN control is a NOS tape, volume
statement has been and header accessibility
processed; otherwise, restrictions will be
default is KU. enforced.

NS Nonstandard labels.
The system skips over
labels based on tape
marks but does not
process the labels.
This option can also be
used in processing a
non-NOS tape.that.
although desigriated as
unlabeled, contains a
tape mark prior to the
beginning of data.

LO Installation ASSIGN 200-bpi tape density (implies
parameter REQUEST 7 -track tape)

LO= !type R LISTLB Specifies the type of labels to
be listed (refer to appendix G).

A List all required and
optional ANSI labels.

I 1-10-4 60435400 C

Keyword Parameter

LSL= lsI

MT

NT

NS= ns

Default Valid On

The labels and data BLANK
format of the specified
volume require the
agreement of the inter-
change parties.

Description

R List all required labels
(VOL1, HDR 1, EOF1,
and if present, EOV1)

o List all optional labels
(VOL2 -9, HDR2 -9,
EOF2 -9, EOV2 -:9,
UVLl-9, UHLa, and
UTLa)

V List all VOLl-9 labels.

H List all HDR1. -9 labels.

F List all EOFl-9 labels.

E List all EOVl-9 labels.

U List all UVLl -9, UHLa,
and U TLa lab els.

Label standard level (refer to
appendix G, VOL1 label).

1 The labels and data for­
mat of this volume con­
form to the requirements
of the ANSI standard.

blank LSL omitted indicates
that the labels and data
format of the specified
volume require the
agreement of the inter­
change parties.

Installation
parameter

Installation
parameter

For all data formats
exc ept I, SI, and X,
the default for ns is
18 frames. The NS
keyword should not be
spec ified for I" SI, and
X format tapes because
the definition of noise
block size is implied
by the format. (Refer
to the F keyword.)

ASSIGN
BLANK
LABEL
REQUEST

ASSIGN
BLANK
LABEL
REQUEST

ASSIGN
LABEL
REQUEST

Specified file resides on or is
to reside on 7 -track tape t

Specified file resides on or is
to reside on 9 -track tape t

Noise size. Any block con­
taining fewer than ns frames is
considered noise and discarded
by the system; the maximum
value of ns is 31 frames. If a
noise size of zero is specified,
the default noise size is used.

I

I

t If MT or N,T is used and disagrees with the track type implied by the density selected, the I
MT/NT CONFLICT message will be issued.

60435400 C 1-10-5

Keyword Parameter Default

OFA= fa Unlimited access

OWNER = usernum/ Refer to
familyname appendix G.

PE Installation
parameter

I PO= P1 P2··· Pn U for system origin
jobs

I

I

1-10-6

Valid On

BLANK

BLANK

ASSIGN
REQUEST

ASSIGN
LABEL
REQUEST

Description

One character that indicates the
current file accessibility of a
labeled tape which is to be
blank labeled. (Refer to FA
description for explanation of
fa characters.)

Identifies the owner of the NOS
labeled tape (refer to appendix
B, VOL 1 label).

1600 -cpi tape density (implies
9 -track tape)

A string of characters spec­
ifying processing options:

A Job will be automatically
aborted on an irrecover­
able read or write parity
error regardless of ep
bit.

N

R

W

U

Job will not be aborted
if an irrecoverable read
or write parity error
occurs regardless of
ep bit; on a read opera­
tion, data will be passed
to the program.

Enforce ring out. If the
tape is mounted with the
write ring in, job proc­
essing will be suspended
until the operator re­
mounts the tape cor­
rectly.

Enforce ring in. If the
tape is mounted without
the write ring in, job
processing will be sus­
pended until the operator
remounts the tape cor­
rectly.

Inhibit unload. Do not
unload at the end of
usage. For system
origin jobs, the inhibit
unload option is selected
by default; for all other
origin type jobs, omis­
sion of the U option
causes the tape to be
unloaded at end of usage.

60435400 C

Keyword Parameter Default Valid On Description

F Force unload. Unload
at the end of usage.
This option is us eful
for system origin jobs
where otherwise U (in­
hibit unload) would be
the default.

E Error inhibit. All hard­
ware read/write errors
are ignored and proces­
sing continues. The
system does not attempt
error recovery, issue
error messages, nor
return error status.
This option is not in­
tended for the normal
user. However, it can
be used to recover por­
tions of data from a bad
tape, for hardware
checkout purposes, and
to write on tape without
skipping bad spots; in
the latter case, the user
is responsible for veri­
fying that the data was
written correctly.

B Directs the system to
write system noise
blocks when performing
write error recovery.
This option Js ignored
for 1600-bpi tapes. In
addition, this option
should not be used for
tapes which are to be
interchanged with other
systems.

I Directs the system to
ignore the block being
read when the EOT is
encountered. t

P Directs the system to
accept the block being
read when the EOT is
encountered. t

t For further information, refer to End-Of-Tape/End-Of-Reel Conditions at the end of this
section.

60435400 C 1-10-7 I

I

I

I

Keyword Parameter Default Valid On Description

S Specifies where the
system is to stop on an
exit condition. For un-
labeled tape, it directs
the system to stop at
the first tape mark after
the EOT is sensed. For
labeled tape, it directs
the system to stop at
the tape mark plus EOF1
or the tape mark plus
EOV 1 when the EOT is
encountered.

QN= seqno Refer to appendix G. LABEL 1- to 4 -digit file sequence
or LISTLB number (refer to appendix G,
p= HDR 1 label). t

R R LABEL Directs the system to read the
existing ANSI label. The
parameters on the LABEL
statement are compared with
the values recorded on the file
labels. If the comparison
fails, the job is aborted.

RT= rd Current date LABEL Retention date in the form
yyddd (used to derive expira-
tion date described in appendix
G, HDR 1 label).

SI= setid Refer to appendix G. LABEL 1- to 6 -character set identifier
or LISTLB for a multifile set (refer to
M= appendix G, HDR 1 label). t

SN= secno Refer to append ix G. LABEL 1- to 4-digit file section num-
or ber (refer to appendix G, HDR 1
V= label).

T= retcycle Refer to appendix G. LABEL 1- to 3 -digit retention cycle
specifying the number of days
from the current data that the
file is to be retained (used to
derive the expiration date
described in appendix G, HDR 1
label, if the RT keyword is not
specified).

t Refer to LABEL Statement in this section for constraints on using the QN and SI param­
eters.

1-10-8 60435400 C

Keyword Parameter

U

VA= va

W

VSN= vsn

60435400 C

Default Valid On Description

Inhibit physical unload BLANK
of tape at end of usage.

Clears inhibit unload (PO=U)
processing option; thus, tape
is physically unloaded when
returned after blank labeling.

Unlimited access

R

Refer to appendix G.

BLANK

LABEL

This does not apply to system
origin jobs.

Volume accessibility. One
character that indicates re­
strictions on who may have ac­
cess to information on the reel
(refer to appendix G, VOL1
label).

omitted

other

VA omitted indicates
unlimited access.

Whenever this reel is
processed under NOS
as an NOS labeled tape
(LB=KL), volume ac­
cessibility restrictions
are imposed. Thus,
the user cannot change
or destroy the VOL 1
label on the tape. This
feature enables an in­
stallation to blank label
new tapes and be assured
that the volume serial
number field of VOL 1
cannot be changed by a
user. If VA is nonblank,
only a system origin job
can change VOL 1.

Directs the system to write
standard ANSI labels using the
parameters specified on the
LABEL statement or their de­
fault values. It is not necessary
to specify the PO=W option to
enforce ring in. If the tape is
mounted without the write ring,
job processing is suspended until
the operator remounts the tape
correctly. However, if the
PO=R option is specified, the
job is aborted. .

A SSIGN A 1- to 6 -character volume
BLANK serial number that uniquely
LABEL identifies a reel of tape (refer to
REQUEST the VSN control statement).

1-10-9

The system allows continuation lines for ASSIGN, BLANK, LABEL, REQUEST, and VSN
statements that require more than 80 characters. If, in processing one of these statements,
the system does not encounter a termination character prior to the end of the line, it
assumes the next line is a continuation line. All continuation lines must contain a blank
in column 1.

I NOTE I
The system accepts continuation lines from a
time-sharing terminal only if they are contained
in procedure files.

The programmer can use a literal for any parameter on a tape management control
statement that contains nonalphanumeric characters. Characters other than letters, numbers,
and asterisks are defined as nonalphanumeric. A literal is a character string delimited
by dollar signs. Blanks within literals are retained. If the literal is to contain a
dollar sign, two consecutive dollar signs must be included. Thus, the literal

$A B$$41$

is interpreted as:

A B$41

If continuation cards are used, a literal cannot extend from one card to another.

Generally, if more than one parameter of a given type is specified, the last one en­
countered in a left-to-right scan is used. The two exceptions to this rule are in the
processing option parameters. If both ring enforcement options (PO=R and PO=W) or
more than one EOT option (PO=I, PO=P, PO=S) is specified, the ARGUMENT ERROR
message is issued to the user's dayfile.

1-10-10 60435400 A

ASSIGN STATEMENT

The ASSIGN control statement can be used to create a new unlabeled tape or access an I
existing labeled or unlabeled tape. The following description applies only to magnetic
tape devices; for use of the ASSIGN statement with devices other than magnetic tape.
refer to section 7.

The control statement format is:

{
FC=fcount } { MT } ASSIGN(nn.lfn.D=den. C-ccount • CV7conv. NT • PO=P1 P2·· • Pn'

F=format. NS=ns. LB=l. VSN=vsn. {g~}) .
nn Device or device type to which the specified file is to be assigned;

nn may be either the EST ordinal t of a magnetic tape unit or one
of the device types MT or NT. MT is defined as a 7-track mag­
netic tape drive; NT is a 9-track magnetic tape drive.

lfn Name of the file to be assigned to the specified equipment.

Although the user can also include this statement to assign a labeled tape to his job, he
cannot use it to create or verify tape labels. It is suggested that the user include
LABEL statements for all tapes whenever possible.

The job must be of system origin or the user must be validated for system origin
privileges. The user must also be validated for use of magnetic tapes. tt If the user
attempts to perform an assignment for which he is not validated, the job is aborted
and the following message is issued to the user's dayfile.

ILLEGAL USER ACCESS.

Before performing the assignment, the system issues a RETURN on lfn.

Example:

ASSIGN(5l. TAPEl)

This statement assigns the file TAPE1 to the magnetic tape unit identified by EST ordinal
51.

-t Con:tact i~stallation personnel for a list of EST ordinals
tt Refer to LIMITS control statement, section 6.

60435400 C 1-10-11

BLANK STATEMENT

The control statement format is:

BLANK(D=den, { ~i }.CV=conv. VSN=vsn, FA=fa. OFA=ofa. VA=va.OWNER=usernum/

familyname. LSL=lsl. U)

With the BLANK control statement, an installation can establish control over the use of
lab.eled tapes. The values supplied on the statement are used to blank label a tape with
standard ANSI volume header (VaLl), first file header (IIDRl), and first end-of-file
(EOFl) labels. The labels a~e written as follows:

I VaLl I IIDRl ~, I EOFl

In writing these labels, the system uses default values for all fields except those fields
for which there are corresponding parameters on the BLANK statement. The VA and
FA keywords can be used to restrict access to information on the reel and the specified
file, respectively. If the tape to be blank labeled is a labeled tape which has a file
accessibility other than A, this old file accessibility must be specified by the OFA
parameter. When the tape is blank labeled, the file accessibility is that specified by
the FA parameter. The default track type may be set by the installation to either MT
or NT. t If a track type other than the default is desired, it must be specified.

Once a tape has been blank labeled, the user can modify the labels as follows:

1. If the volume accessibility field of VOL 1 indicates unlimited access (that is,
VA is blank), the user can:

• Include another BLANK statement to change VOLl, HDRl, or EOFl values.

• Request the tape as unlabeled (that is, LB=KU) and write it in whatever
format the user specifies.

• Include a LABEL statement to change HDRl by specifying one or more of the
parameters associated with that label and selecting the write label (W)
option.

2. If the volume accessibility field is nonblank; the user can:

• Include a LABEL statement to change HDRl. However, in requesting· a tape
in which V A is nonblank, the user must specify an NOS labeled tape
(that is, LB=KL), and therefore, cannot change or destroy the VaLl
label.

• Submit a system origin job to change VOL 1.

t Contact installation personnel for the default track type.

1-10-12 60435400 B

LABEL STATEMENT

The control statement format is:

LABEL(lfn, D=den, FC=fcount, CV=conv, {~f} , PO=P1P2 ••• Pn' F=format, NS=ns,

LB- S - { CK} IF1=fileid}
-P. , V N-vsn, CB,'t L=fileid ' FA=fa,

{QN=seqno} _ _ {CR=cdate}
P=seqno ' G-genno, E-gvn, C=cdate'

{ SI= setid} ,{SN=seCnO}
M=setid' V=secno'

{RT=rdate } {W}'
T=retcycle ' R

lfn Name of the file that resides on or is to reside on magnetic
tape

The LABEL control statement directs the system to assign file lfn to a tape unit. This
assignment occurs using VSN only; the file identifier is not considered in assigning.
If a file by the name lfn already exists, the following action is taken.

1. If lfn is assigned to a device other than a tape unit, job processing continues
with the next control statement.

2. If lfn is an existing tape file and the read label (R) parameter is specified, the
system compares the parameters on the LABEL statement with the values re­
corded on the file labels. If the comparison fails, the job is aborted.

3. If lfn is an existing tape file and the write label (W) parameter is specified, the
system rewrites the header labels (information in HDR 1 is not altered). Process­
ing then continues with the next control statement.

To assign to tape an lfn that was previously assigned in the same job to another device,
the user must make sure that lfn is returned before the LABEL statement is processed.
Note that the default track type may be set by the installation to either MT or NT. t If a
track type other than the default is desired, it must be specified. If neither MT nor NT is
specified and no VSNs are present, any equipment for which the user' is validated may be
assigned.

If lfn is to be used for checkpoint dumps and the dumps are to be written on labeled tape,
the CK or CB parameter must be included on the LABEL statement. For further information
about checkpoint dumps, refer to the REQUEST control statement.

The SI (M) parameter must be present for multifile label positioning using control
statements. If the QN (P) parameter is present, the multifile set is positioned to the
file set member that matches the specific sequence number. If QN is not specified and
the FI (L) parameter is present, the- multifile set is positioned to the file set member
that matches the file identifier specified. If QN and F1 are specified, a match must
occur on both sequence number and file identifier. If neither QN nor FI is specified,
the tape is positioned to the next file in the multifile set.

To extend a multifile set, QN mu(st be set to 9999.

If the SI parameter is not specified, file positioning is not done. The Rand W param­
eters on the LABEL statement are ignored if SI is specified. If the W parameter is
specified, (QN = 1) and it is the first OPEN on the file, an OPEN /WRITE is performed.

t Contact installation personnel for the default track type.

60435400 C 1-10-13

Example 1:

LABEL (NEWFILE, VSN=TP01, FI=FILEA, W)

This statement creates an ANSI-labeled tap~ which the job can access by the filename NEWFILE.
Default values are used for all fields of HDR 1 except the file identification, FILEA.
Any data written is recorded in 512 CM word blocks.

Example 2:

LABEL(OLDFILE, VSN=TPO 1, FI=FILEA)

This statement assigns the tape file created in a previous job (refer to example 1) to the file
OLDFILE. The system compares the vsn in VaLl and the file identification in HDRl with
the values on the statement.

Example 3:

The following sequence of control statements in a single job creates two files of a
multifile set.

LABEL(TAPE~ VSN=ONE, F=1, F1= F1RSTF1LE, S1=TEST, QN=1, W)
COPYBR(INPUT, TAPE)
LABEL(TAPE, VSN=ONE, F= 1~ F1=SECONDF1LE, S1= TEST, QN=9999)
COPYBR{1NPUT, TAPE, 10)
RETURN{TAPE)

The sequence number QN must equal 9999 to add the second file. This file will be
referenced with QN=2 (refer to examples 6, 7, and 8).

Example 4:

The following control statements in a new job add a third file to the multifile set
created in example 3.

LABEL(TAPE, VSN=ONE, F=1, F1=TH1RDF1LE~ S1=TEST, QN=9999)
COPYBR(D1SK, TAPE, 3)
RETURN(TAPE)

Example 5:

Anyone of the following control statements can be used to read the first file of the
multifile set created in examples 3 and 4.

LABEL{TAPE, VSN=ONE, F=I)
LABEL(TAPE~ VSN=ONE, F=1, F1=F1RSTFILE)
LABEL(TAPE, VSN=ONE, F'=1, F1=F1RSTF1LE, S1=TEST)

Positions according to the FI specification. The user will employ this method if
the sequential location of the file on the tape is not known.

LABEL(TAPE, VSN=ONE, F=1, QN=l, SI=TEST)

Positions according to sequence number.

LABEL(TAPE, VSN=ONE, F=1, QN=1, F1=F1RSTF1LE, S1=TEST)

Positions by sequence number, but there must be a satisfactory compare of the FI
or the job will abort.

• 1-10-14 60435400 C

Example 6:

A ny one of the following control statements can be used to read the second file of the multi­
file set previously created.

LABEL(TAPE, VSN=ONE, F=I. QN=2, SI=TEST)
LABEL(TAPE. VSN=ONE, F=I, FI=SECONDFILE, SI=TEST)
LABEL(TAPE, VSN=ONE, F=I, FI=SECONDFILE, QN=2, SI=TEST)

Example 7:

Execution of the following control statements destroys the third file of the multifile set
previously created.

LABEL(TAPE, VSN=ONE, F=I. QN=2, SI=TEST)

Positions to the beginning of file 2.

COPYBR (DISK, TAPE)

Writes a new file 2.

REW1ND(TAPE)

Puts an E01 at the end of file 2.

Example 8:

The following example can be used to replace the second file of the multifile set pre­
viously created and still retain the first and third files.

LABEL(TAPE. VSN=ONE, F=I, QN=3, SI=TEST)
COPYBR(TAPE, DISK, 3)
LABEL(TAPE, VSN=ONE, F=I, QN=2, SI=TEST)
COPYBR(INPUT, TAPE)
LABEL(TAPE, VSN=ONE, F=I, QN=9999, SI=TEST, FI=THIRDFILE)
REWIND(DISK)
COPYBR(DISK, TAPE, 3)
etc.

60435400 C

Saves file 3

Replaces file 2

Copies back file 3

1-10-15 •

LISTLB STAlEMENT

The control statement format is:

LISTLB (lfn, {
SI=setid)
M=setid {Q~:::~~~} . LO=ltype. L=out)

The LISTLB control statement directs the system to read the ANSI labels on the tape
file specified by lfn and write them on the user specified file out. The ltype param­
eter allows the user to specify the type of labels to be listed (refer to appendix G for
a description of each type of label). The setid· and seqno parameters are used to list
the labels of multifile tapes, as follows:

setid

Specified

Specified

Not specified

seqno

Not specified

Specified

Specified

Significance

List labels of all files in multifile set.

List labels of file with specified seqno only.

Illegal combination; LISTLB aborts.

The user cannot position a multifile tape to a particular file and list the labels for that file.
The multifile tape should be positioned at loadpoint, and LISTLB then positions the tape and
lists the labels of the desired file. For example, the following lists the labels of file 2 of
multifile set ABCDEF.

LABEL(T, MT, D=HY, SI=ABCDEF, VSN=EXAMP1)
LISTLB(T, SI=ABCDEF, QN=2)

When listing the labels of all files of a multifile set, LISTLB keeps positioning the tape and
listing the labels of each file until an end-of-set status is returned to the FET. This causes
the following dayfile messages to appear in the user's dayfile

MULTI-FILE NOT FOUND, lfn AT 110.
REQUESTED SECTION n+1.
FOUND SECTION n.

where n is the last file of the set. These· messages also appear if the user requested a file
that was not in the set.

To list all the labels of a multireel file, no special parameters or techniques are used.
However, to list only the volume and/ or header group labels (trailer labels not listed), the
user requests each reel separately and employs a LISTLB control statement for each reel.
This is necessary since, in this case, no SKIPEI is issued to cause automatic reel switching
to take place. Automatic reel switching takes place only if trailer labels are also being
listed. For example, the following lists both volume and header group labels of two reels
of a· multireel file. .

LABEL(T, MT, D=HY, VSN=REEL1)
LISTLB(T, LO=VH)
RETURN(T)
LABEL(T, MT, D=HY, VSN=REEL2)
LISTLB(T, LO=VH)

I 1-10-16 60435400 C

To list all the labels of a multireel file. only one LISTLB control statement is required.
For example:

VSN(T =REELl/REEL2)
LA BEL(T • MT. D =HY, VSN=REELl)
LISTLB(T) or LISTLB(T. LO=R)

REQUEST STATEMENT

The· REQUEST control statement enables the user to assign a file to a device by including
in the comment field a description of an acceptable device.

The control statement format is:

REQUEST (lfn D=den {FC=fcount} CV { MT} PO F f t • , C=ccount.· =conv, NT· =Pp P2· • • Pn' = orma ,

NS=ns, LB=!, VSN=vsn, {g~})
This comment is displayed at the system console, directing the operator to make the
requested assignment. If the user has previously specified a vsn via a VSN control
statement or if he has included the VSN keyword on the REQUEST statement, the system
initiates automatic tape file assignment.

If lfn already exists when the REQUEST is made, no new assignment is made and job
processing continues with the next control statement. However, the user can reassign lfn
by issuing a RETURN on the file before making the REQUEST.

The REQUEST statement can be used to create new and access existing 7 - or 9-track
unlabeled tapes. Although the user can also include this statement to assign a labeled
tape to his job, he cannot use it to create or verify tape labels. It is suggested that
LABEL statements be used for all tapes whenever possible. The default track type may
be set by installation to either MT or NT. t If a track type other than the default is
desired, it must be specified.

If lfn is to be used for checkpoint dumps, either the CK or CB keyword is specified.
These keywords are used in conjunction with the CKP and RESTART control statements;
they allow the user to:

• Save all checkpoint dumps by appending each dump to the checkpoint file

REQUEST(lfn, CK)

tContact installation personnel for the default track type.

60435400 C 1-10-17 I

I

• Save the last checkpoint dump by writing each dump at the beginning of the
checkpoint file.

REQUEST (lfn. CB)

• Save two consecutive checkpoint dumps by alternately writing on two checkpoint
files.

REQUEST(lfnl. CB)
REQUEST(lfn2, CB)

If the CK parameter is specified for alternate files or if more than two checkpoint files
are specified. the job is aborted and the following message is issued to the user's day­
file.

CHECKPOINT FILE ERROR.

The user is not required to supply a REQUEST statement to define a checkpoint file. He
can use an ASSIGN or LABEL statement or he can use default values.

If no REQUEST statement specifying a checkpoint file has been detected when the first CKP
statement is encountered. the system requests a device for the user. specifies a file name
of CCCCCCC. and selects the CK option. For a subsequent restart job. however, the sys­
t~m assumes the user has made the checkpoint file available.

VSN STATEMENT

The control statement format is:

VSN (lfn 1 =vs n 1. lfn2 =vs n2 ••••• Ifnn =vs nn)

Ifni Name of the file with which the specified vsn is to be
associated

1- to 6 -character volume serial number to be associated
with Ifni. If the vsni is zero, absent, or SCRATCH, any
available scratch tape is automatically assigned to Ifni. If
characters other than letters and numbers are used, vsni
must be specified as a literal.

The system allows tape assignment to be performed either by the system or by the
operator. By supplying a vsn uniquely identifying every tape (labeled, unlabeled, and
nonstandard labeled), the user enables the system to assign tapes without operator
intervention.

A vsn is provided via the VSN keyword on a LABEL or REQUEST statement or via a
VSN statement. With a VSN statement the user can:

• Omit the VSN keyword from his LABEL or REQUEST statements and specify
lfn /vsn associations on the VSN statement instead. This allows the user to
specify new vsns without changing LABEL or REQUEST statements.

1-10-18 60435400 C

• Override the vsn specified on subsequent ASSIGN. LABEL, REQUEST, or
VSN statements. For example. the sequence.

VSN(FILEA=123)

VSN(FILEA = 124)

LABEL(FILEA)

directs the system to assign FILEA to the tape with vsn 123. However.
the user can redeclare an lfn/vsn association by returning the file. Thus.
the following sequence

VSN(FILEA = 123)

. RETURN(FILEA)

VSN(FILEA = 124)

LABEL(FILEA)

directs the system to assign to FILEA the tape with vsn 124.

• Associate the vsns of two or more duplicate reels with one file. t If any
of several duplicate reels can be used (that is. they differ only in vsns).
the vsns should be separated by equal signs. Thus. the statement

VSN(FILE1=VOL 100=VOL 101)

indicates that either the tape with the vsn of VOL 100 or the tape with the
vsn of VOL101 can be assigned to FILE1.

• Specify the vsns of a multireel file. t If the file extends to more than one
reel. the vsns for all reels required must be separated by slashes.
The system assigns the reels in the order indicated in the statement.
For example, the statement

VSN(FILE2=VSN23/VSN24/VSN25)

indicates that FILE2 may extend to the three reels identified by the vsns of
VSN23, VSN24. and VSN25.

The system processes tape requests as follows:

1. Whenever a tape is mounted, the system checks for labels. If the tape was
labeled, the system keeps a record of the vsn read from VOL1 and the equip­
ment on which the tape is mounted.

2. If. when a request is made for tape assignment. an lfn/vsn association is en­
countered, the system compares the vsn associated with the file (or one of its
equivalences) with the vsns read from mounted tapes. If a match is found. the
system automatically assigns the tape to the requesting job, provided a deadlock
would not occur. If the tape is not mounted, the system rolls out the job until
a tape with the requlred vsn is mounted. For a mounted. unlabeled tape. the
operator enters a VSN command specifying the required vsn. The system is
then able to automatically assign the tape.

3. If no lfn/vsn association is encountered when the request is nlade, the system
directs the operator to assign an available unit.

4. For an ASSIGN statement, the method of assignment depends on the nn
parameter. If nn is a device type (MT or NT), the operator must ass ign
an available unit. If nn is the EST ordinal of a tape unit, the system
automatically assigns the specified unit.

t Up to 55 vsns can be specified for a single file in any combination of duplicate reel
and / or multireel configurations.

60435400 C 1-10-19 I

The following is a summary of the system and/ or operator action taken in response
to an ASSIGN~ LABEL~ or REQUEST statement. The VSN column indicates whether
or not the user has specified an lfn/vsn association via the VSN keyword or a VSN
statement. The mode column shows the mode as determined by the system in check­
ing for labels.

Statement

ASSIGN

REQUEST

LABEL

VSN

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

Mode

Labeled

Unlabeled

Labeled

Unlabeled

Labeled

Unlabeled

r

Labeled

Unlabeled

Labeled

Unlabeled

Labeled

Unlabeled

Action

If the nn parameter is MT or NT, the operator
must assign an available unit. If the nn param­
eter is the EST ordinal of a tape unit, assign­
ment is automatic.

Same as when the vsn is specified and the tape
is labeled.

Same as when the vsn is sp~cified and the tape
is labeled.

Same as when the vsn is specified and the tape
is labeled.

The system matches the vsn read from VOL 1
with the vsn on the REQUEST or VSN state­
ment. Assignment is automatic.

The operator enters a VSN command specifying
the vsn included on the REQUEST or VSN state­
ment. t Assignment is automatic.

The operator assigns an available unit to Un.

The operator assigns an available unit to Un.

The system matches the vsn read from VOL 1
with the vsn on the LABEL or VSN statement.
Assignment is automatic.

The operator enters a VSN command specifying
the vsn included on the LABEL or VSN state­
ment. t Assignment· is 'automatic.

The operator assigns an available unit to Un.

The operator assigns an available, unit to Un.

The LB keyword is not used in assigning a tape. Rather,.it is .used in processing the data
on the tape once the assignment has been made.

t A VSN which contains special characters should not be specified in a request for an unlabeled
tape. It is not possible to enter special characters via the VSN, xx, aaaaaa •. operator com­
mand.

I 1-10-20 60435400 C

MAGNETIC TAPE FORMATS

The standard magnetic tapes used are 7-track,' 1/2-inch tape and 9-track, 1/2-inch
tape. Each type of tape can be written in binary or coded mode. Unless specified
otherwise, tapes are assumed to be in binary mode. The user can select 200, 556,
or 800 bits per inch (bpi) density for 7-track tapes or 8,00 or 1600 characters per
inch (cpi) density for 9-track tapes, provided these densities are available with the
hardware. Tape density can be specified by a LABEL, ASSIGN, or REQUEST control
statement, the LABEL macro (refer to section 4, volume 2), or an IPRDECK installa­
tion option (refer to the NOS Installation Handbook). The system normally performs
automatic processing of tape parity errors and end-of-tape conditions. However, the
user can control the processing of these functions via the PO keyword on LABEL, AS­
SIGN, and REQUEST control statements or the up and ep fields of the FET (FET+1, I
bits 45 and 44).

DATA FORMATS

Data can be recorded on magnetic tape in any of eight formats.

Format Description

I Internal

SI System internalt

X External

S Stranger

L Long block strange'r

E Line image

B Blocked

F Foreign

The control statement user specifies the data format via the F keyword of a LABEL,
ASSIGN, or REQUEST control statement. The LABEL macro user specifies the data
format via FET+I0, bits 30 through 35. The following is a description of the physical
and logical characteristics of each format. Note that the user can define maximum
block size, end-of-reel conditions, and noise for any format via control statement or
FET parameters; the following description of these characteristics defines the suggested
(and default) values.

t NOS /BEsystem default tape format.

60435400 C 1-10-21

(Internal) Format

Charact~ristics

Header

Mode

Block size (PRU size)

Logical end-of-record

Logical end-of-file

Logical end-of-information

t Refer to appendix G.

1-10-22

Description

Labeled or unlabeled

Binary

Actual data block size can range from 0 to 512
(10008) ·CM words in exact multiples of CM words.
All blocks except those containing labels include
a 48-bit block terminator formatted as follows:

47 35 11

I byte count I block number I 0

byte count

block number

In

Total number of bytes in the
block including the block
terminator

Number of blocks since the
last HDR 1 label t
Level number

o End-of-record

178 End-of-file

User-specified frame or character counts have no
meaning.

Any block with fewer than 512 (10008) CM words
of data is considered a logical end-of-record.
During a write operation, the level number field of
the block terminator contains the level number
obtained from FET+O, bits 14 through 17, or the
WRITECW macro control word. During read op­
erations, the system will return end-of-record
status and the contents of the block terminator level
number field. If the level number is 17 g, the
system will also return end-of-file status. Some
blocks may consist only of a block terminator.

Any block consisting of only a block terminator with
a level number of 178 is considered a logical end­
of-file. The system ensures that an end-of-record
will always precede an end-of-file by writing, if
necessary, a block terminator with a level number
of zero prior to the end of file.

A tape mark followed by an EOFl label is con­
sidered the end-of-information. This trailer se­
quence is generated by the system on labeled and
unlabeled I and SI format tapes. The system is­
sues a label content error if it encounters a tape
mark without a valid label following it.

60435400 C

Characteristics

End-of-reel

Noise

Special considerations

51 (System Internal) Format

Characteristics

Header

Mode

Block size (PRU size)

Logical end-of-record

60435400 C

Des cription

Refer to option 3 under End -Of - Tape / End -Of - Reel
Conditions.

Any block containing fewer than eight frames for
7-track tapes or six frames for 9-track tapes is
considered noise, and therefore, ignored •

• All 9-track tapes are written in an even multiple of
bytes .

• On all read operations, the system checks for fill
status and compares the number of bytes read and
the block number expected with the byte count and
block number values in the block terminator. If
the specified condition does not occur, the system
handles it as if it were a parity error. This method
is designed to prevent dropped or fragmented blocks;
in general, it provides a much higher degree of
reliability than any other format.

Description

Labeled or unlabeled

Binary or coded as indicated by FET+O, bit 1.

For binary mode, the block size can range from 0
to 512 (10008) CM words in exact multiple s of CM
words. A nv block smaller than the maximum size
except those containing labels will contain a 48-bit
block terminator. This terminator has the same
format as that for I format. For coded mode, the
block size can range from 0 to 128 (2008) CM words
in exact multiples of CM words. Any bIock smaller
than the maximum size except tho se containing labels
will contain a 48-bit block terminator formatted as
follows:

47 (Ill 1 blank:-;

In Blank if level is 0

1 through 178 for all other levels

User-specified frame or character counts have no
meaning.

For binary mode, any block containing fewer than
512 (1000) CM words represents a logical end-of­
record. ~or coded mode, any block containing fewer
than 128 CM words represents a logical end-of-record.
If a logical record consists of an exact multiple of
512 (binary) or 128 (coded) CM words, the block
that denotes the logical end-of-record consists solely
of a block terminator. During write operations, the
level number field of the block terminator contains
the level number from FET+O, bits 14 through 17,
or the WRITECW macro control word. During read
operations, the system will return end-of-record
status and the contents of the block terminator level
number field. If the level number is 178, the system
will return end-of-file status.

1-10-23 I

I

I

I

Characteristics

Logical end-of-file

Logical end-of-information

End-of-reel

Noise

Special considerations

X (External) Format

Characteristics

Header

Mode

Block size (PHU size)

Logical end -of-record

Logical end -of-file

1-10-24

Description

Same as for I format.

Same as for I format.

Refer to option 3 under End-Of-Tape/End-Of-Reel
Conditions.

Same as for I format.

• The system writes all 9-track tapes with 3n+2 mode.

• The system does not perform block checking via block
terminators as is done for I forma t.

• For read and write operations on a coded 7 -track tape,
NOS is incompatible with NOS/BE. The system con­
verts data from display code to external BCD on write
operations and from external BCD to display code on
read operations. NOS/BE converts data from external
BCD to internal BCD on both read and write operations.

• For 7 -track tapes, standard code conversion is
performed. For 9-track tapes, no code conversion
will be performed (it is written to tape in display
code).

• For read operations, if a coded 7-track tape contains
external BCD 1632 in byte 4 of a CM word, the
system converts it to an end-of-line (0000 in display
code). The converse is true for write operations.

• The FET device type is returned in NOS/BE format
(refer to the description of theCIO OPEN macro in
section 3, volume 2).

Description

Unlabeled

Binary

Actual data block size can range from 0 to 512 (10008)
CM words in exact multiples of CM words.

Any block containing fewer than 512 CM words repre­
sents a logical end-of-record. If a logical record
consists of an exact multiple of 512 words, the block
that denotes the logical end-of-record consists solely
of a 48 -bit block terminator.

Tape mark

60435400 C

Characteristics

Logical end-of-information

End-of-reel

Noise

Special considerations

S (Stranger) Format

Characteristics

Header

Mode

Block size (PRU size)

Logical end-of-record

Logical end -of -file

Logical end -of-information

End of-re€l

Noise

Special considerations

Description

None

Refer to option 1 under End-Of-Tape IEnd-Of-Reel
Conditions.

Same as for I format.

• X -formatted tapes cannot be labeled •

• All 9-track tapes are written in an even multiple of
bytes.

Description

Labeled or unlabeled

Binary or coded as indicated by FET+O, bit 1.

No explicit multiple of frames is required. The
maximum block size may be specified in the .mlrs
field of the FET (FET+6, bits 0 through 17). If
no block size is specified in the mlrs field, it is
assumed to be 1000S' The maximum block size
is 1000S CM words. If the block size is longer
than 1000S, the tape is L format.

On a CIa READ (010) or READSKP(020) request,
each PRU is considered an end of record.

Tape mark

If the tape is unlabeled, there is no logical. end-of­
information. If the tape is labeled, the logical end­
of-information is a tape mark followed by an EOF1
label.

Refer to option 2 under End-Of-Tape/End-Of-Reel
Conditions.

Any block containing fewer than IS frames is con­
sidered noise, and therefore, ignored.

• Level numbers 1 through 16S are interpreted as level
number O.

• Standard code conversion is performed for 7- or 9-
track tapes in coded mode.

• For CIa READ (010), WRITE (014), WRITER (024),
and WRITEF (034) functions, a one-block (PRU)
operation is performed with the unused bit count
(FET+7, bits 24 through 29) taken from and returned
to the FET.

I

e The FET device type is returned in NOS/BE for- I
mat (refer to the description of the CIa OPEN
macro in section 3, volume 2).

L (Long Block Stranger) Format

The characteristics and descriptions are the same as for S format tapes except that if
no block size is specified in the mlrs field (FET+7, bits 0 through 17), it is assumed
to be LIMIT-FIRST-l.

60435400 C 1-10-25

I

I

I

E (Line Image) Format

Characteristics

Header

Mode

Block size (PHU size)

Logical end-of-record

Logical end-of-file

Logical end-of-information

End-of-reel

Noise

Special considerations

Description

Unlabeled

Coded

The block size cannot exceed 5120 frames. If the
tape unit will not allow an odd number of frames to
be written, the system will append a space. Unless
the user specifies otherwise when he requests the
tape, the system assumes the maximum block size
is 136 frames.

For a write operation, there is no logical end-of­
record. For a read operation, end-of-record status
is returned when a tape mark is encountered. An
additional read operation returns end -of -file status.

Tape mark

None

Refer to option 2 under End-Of-Tape/End-Of-Reel
Conditions.

Same as for S-formatted tapes.

• E-formatted tapes cannot be labeled.

• For a write operation, a block of data will stop either
at a zero byte (end-of-line) in byte 4 of a CM word or
at the multiple of CM words (rounded up) based on the
frame or character count. The system will then space­
fill the buffer to the number of frames specified. Thus,
the amount of data written will exactly equal the amount
specified.

• For a read operation, if there is an odd number of
characters, the system will space-fill the last six
bits of the last byte and delete all trailing spaces.
For control word reads, byte count and unused bit
count will be set appropriately. For regular reads,
EOL is guaranteed.

• For a control word write operation, no end-of-line
processing is done. Data is blocked on tape using the
specified frame count. Likewise for a control word
read operation, no end-of-line processing is done;
data is transferred to the user as it is read.

1-10-26 60435400 C

B (Blocked) Format

Characteristics

Header

Mode

Block size (PRU size)

Logical end-of-record

Logical end-of-file

Logical end -of-information

End-of-reel

Noise

Special considerations

60435400 C

Unlabeled

Coded

Description

The block size cannot exceed 5120 frames. If the
tape unit will not allow an odd number of frames
to be written, the system will append a space. Un­
less the user specifies otherwise when he requests
a tape, the system will assume the maximum block
size is 150 frames.

For a write operation, there is no logical end-of­
record. For a read operation, end-of-record status
is returned when a tape mark is encountered. An
additional read operation returns end -of -file status.

Tape mark

None

Refer to option 2 under End-Of-Tape IEnd-Of-Reel
Conditions.

Same as for S-formatted tapes.

• B-formatted tapes cannot be labeled.

• A write operation will stop either at a zero byte
(end-of-line) in byte 4 of a CM word or at a mul­
tiple of CM words (rounded up) based on the frame
or character count.

• For control word reads, byte count and unused bit
count will be set appropriately. For regular reads,
EOL is guaranteed.

.• For a control word write operation, no end-of-line
processing is done. Data is blocked on tape using
the specified frame count. Likewise for a control
word read operation, no end-of-line processing is
done; data is transferred to the user as it is read.

1-10-27·

I

I

I

F (Foreign) Format

Characteristics

Label

Mode

Block size (PRU size)

Logical end-of-record

Logical end -of -file

Logical end -of -information

End of reel

Noise

Special considerations

1-10-28

•

Description

Unlabeled

Binary or coded, as needed, for 7-track tapes and
binary for 9-track tapes

The block size cannot exceed the CM buffer size.
No explicit multiple of frames is required. The
maximum block size must be specified at tape
request time. The block size is used to determine
whether to continue read or write operations based
on the amount of data versus the space in the buffer.
For example, if the maximum block size is 10008
CM words, the read operation will stop any time
less than 10018 words remain. It is recommended
that the user specify a buffer size equal to the
largest block.

None

Tape mark

None

Refer to option 1 under End-Of-Tape/End-Of-Reel
Conditions.

Any block containing fewer than 18 frames is con­
sidered noise, and therefore, ignored.

For 7 -track tapes, if a parity error is detected be­
cause the tape is being read in the opposite mode,
the mode will be switched.

• F-format operations are only done using control
word reads and writes. On read operations, the
control words are transferred to the user regard­
less of the operation being used.

Labeled tapes that have been assigned as F format
will have their labels treated as data on 7 -track
tapes. Labels will generate parity error on 9-
track tapes, which process binary mode only.

60435400 C

END-OF-TAPE/END-OF-REEL CONDITIONS

The following is a description of the processing options for end-of-tape conditions. The
user can select one of these options by default by specifying the data format or he can
specify an option via the PO keyword on a LABEL, ASSIGN, or REQUEST control state­
ment or the processing option field of the FET (FET+8, bits 36 through 47). In addi­
tion, the user processing option (FET+l, bit 45) gives the macro user control over
end-of-reel conditions. For further information, refer to the CLOSER, REWIND, and
UNLOAD macros described in section 3, volume 2.

Option PO= Option

1 I

2 P

3 S

Description

If, during a write operation, the system senses the end­
of-tape, it rewrites the block on which the EOT occurred
as the first block on the following reel. No trailer infor­
mation is written on the current reel. During a read
operation, the block on which the EOT occurred is ignored
and reading continues on the next reel. If a tape mark
and the EOT are sensed at the same time, the EOT is
ignored.

If, during a write operation, the system senses the end­
of-tape, the system writes a trailer sequence, consisting
of a tape mark, following the block on which the EOT was
sensed. Any data that occurs following the block on which
EOT was sensed, yet before the tape mark, is ignored.
During a read operation, the system transfers to the user
the block on which the EOT was sensed. The read opera­
tion resumes on the next reel. If a tape mark and the
EOT are sensed at the same time, the EOT is ignored.

If, during a write operation, the system senses the end­
of-tape, the system writes a trailer sequence following the
block on which the EOT was sensed. This trailer sequence
consists of a tape mark followed by an EOVl label for
labeled tapes and tape marks for unlabeled tapes. Th-e
next block is written on the next reel. During a read
operation, the EOT is noted and the system transfers to
the user the block on which the EOT was sensed plus all
following blocks until a trailer sequence (as described
above) is recognized. Reading resumes on the next reel.

For options 1 and 2, the system is concerned only with the block on which the EOT is sensed.
If tapes written using these options are transferred to another system, any data that occurs
on the reel after this block should be ignored.

60435400 C 1-10-29 I

PRODUCT SET CONTROL STATEMENTS 11

Table 1-11-1 gives a list of widely used products supported by NOS and the basic con­
trol statement formats for these products. The parameters for the COMPASS control
statement are described in volume 2 of this reference manual. The parameters for
the. other control statements in the table are given in this section. For the full array
of products supported by NOS, consult the list of publications in the preface. '

FORTRAN Extended 4, COBOL 4, COBOL 5, and Sort/Merge 4 use the CDC CYBER
Record Manager for accessing files. NOS supports the indexed sequential, direct
access, and actual key file capabilities of the Record Manager (refer to the CDC CYBER
Record Manager Reference Manual).

TABLE 1-11-1. PRINCIPAL PRODUCTS SUPPORTED BY NOS

Basic
Product Name Control Statement

Format

ALGOL 4 ALGOL.

BASIC 3 BASIC.

COBOL 4 COBOL.

COBOL 5 COBOL5.

COMPASS 3 COMPASS.

FOR TRAN Extended 4 FTN.

Sort/Merge 4 SORTMRG.

USER LIBRARIES

NOS offers the user the option of specifying a library other than the product set default
library. The user can then write library routines to perform special functions to meet
his own requirements. t Routines can also be given names identical to routines from
another library \vithout causing a system conflict. This enables a user to compare the
performance of library routines without modifying his software.

t Refer to the CDC CYBER Loader Reference Manual for information about the genera­
tion of a user library.

60435400 C 1-11-1 •

I

The libraries from which externals are to be satisfied can be specified as parameters
on the LDSET statement as follows:

LDSET(LIB=lib 1 /lib 2 /. • • /libn }

LOAD (lfn)

Library from which externals are to be satisfied. The system checks
through the specified libraries sequentially.

lfn Name of the file to be loaded.

Libraries can also be specified by using the LIBRARY statement to define the global
library set. t The default system library, SYSLIB, is used to satisfy the externals if no
library is specified or if unsatisfied externals exist after using the libraries specified or
defaulted.

CONTROL STATEMENT FORMATS

The following is a description of the program call statements for the product set mem­
bers listed in table 1-11-1 (with the exception of COMPASS, which is given in volume
2).

I NOTE I
Product set format does not allow file names be­
ginning with a numeric character (refer to Control
Statement Format, section 5).

t Refer to the CDC CYBER Loader Reference Manual for information about the genera­
tion of a user library.

1-11-2 60435400 C

ALGOL STATEMENT

The ALGOL control statement is used to call the ALGOL 4 compiler to a control point.
The minimum memory requirement for ALGOL 4 is 46", 000 octal locations. External
references are satisfied from ALGOLIB.

The control statement format is:

ALGOL, Pl' P2' • • • , Pn·

The following parameters may be supplied. The absence of any parameter suppresses
the corresponding option.

Pi Description

A

A=O

A omltted

B

B=lfnl

B=O

B omitted

C=n

C omitted

D

60435400 C

Specifies that the assembly language form of the object code is to be
written on the file specified by the L option.

No assembly language listing.

Same as A=O.

The output object program is to be written on file LGO.

The output object program is to be written on file lfnt.

No binary object program.

Same as B= LGO.

Comments interpretation for special delimiters. This option requires
the compiler to search comments for special delimiters interpretation.

n

o

1

2

3

Description

No comments interpretation.

Debugging directives which are present in comments
are detected by the compiler and cause debugging
code to be inserted into the object program.

Overlay directives which are present in comments are
detected by the compiler and cause overlay dlrectives
in loader input format to be inserted into the object
program.

Array bound checking directives which are present in
comments are detected by the compiler.

Multiple selection for the C option can be performed by separathig
each value by a slash. For example, C=3/2/ 1 is acceptable.

Same as C=O.

The symbol file is created on file DUMPFIL.

The symbol file is created on file lfn2.

1-11-3

I

I

I

I

I

I

I

I

I

I

Pi

D=O

D omitted

E

E=O

E omitted

F

F=O

F omitted

G

G=O

G omitted

I

I=lfn3

1=0

I omitted

K=n

K omitted

L

L=lfn4

L=O

L omitted

N

N=O

1-11-4

Description

The symbol file is suppressed.

Same as D=O.

The job is aborted if a fatal error occurs during compilation. If an
EXIT control statement is included in the job, exit processing is
performed.

Suppresses abort in the event of a fatal error.

Same as E=O.

If a fatal error is found in the first pass, compilation is terminated at
the end of this pass.

Continue until the normal end of compilation.

Same as F=O.

Compilation will consider stack swapping to ECS and when the program
is executed, the swapping procedures are activated automatically.

No swapping will be considered.

Same as G=O.

This option must not be selected when using a machine without ECSj
otherwise, unpredictable results leading to a fatal error are obtained.

Source input is on file INPUT.

Source input is on file lfn3.

No source input.

Same as I=INPUT.

Input record size.

n The number of significant characters to be interpreted
by the compiler on the source statement image.

Same as K=72.

The source program is listed with fatal diagnostics on file OUTPUT.

The source program is listed with fatal diagnostics on file lfn4.

Fatal diagnostics only are listed on file OUTPUT.

Same as L=OUTPUT.

A listing of advisory diagnostics is generated on the file specified by
the L option.

Advisory diagnostics are suppressed; only diagnostics fatal to code
generation are listed~

60435400 C

Pi

N omitted

O=n

o

o omitted

P

P=lfn5

p=o

P omitted

Q

Q=lfn6

Q=O -

Q omitted

R

R=O

R omitted

S=n

60435400 C

Description

Same as N.

Specifies the level of compiled optimization.

n Description

o

1

2

Same as 0=0.

Same as 0=0.

The program is compiled in fast compile mode.

Linguistic optimization is performed by optimiz ing
procedure calling.

Optimizations of 0= 1 and also subscript and for state­
ment optimizations.

Specifies that the assembly language form of the object code is to be
punched in standard assembly language card format on file PUNCH.

Assembly language is to be punched on file lfn5'

Assembly language punching is suppressed.

Same as P=O.

Creates interactive file on file QFILE for ALGOL -Interacti ve Debugging
Aids (AIDA).

Creates -interactive file on file lfn6'

Suppresses interactive compilation and file.

Same as Q=O.

Q may not be specified if the S option is selected.

A cross -reference map is produced and listed at compile time for
identifiers in the source program on the file specified by the L option.

No cross-reference map is produced.

Saine as R= O.

Array storage location.

n Description

o All arrays are allocated to CM.

1 Virtual arrays are allocated to ECS.

I

I

I

I

I

2 All arrays are allocated to LCM. This option applies I
only to programs executed on -a CDC CYBER 70 Model
76.

S may not be specified if the Q parameter is specified.

1-11-5

I

I

I

I

I

S omitted

u

U=O

U omitted

x

x=O

X omitted

Description

Same as S=O.

Specifies that the file COMPILE contains user implicit outer block
head input, supplementary to the file specified with the I option.

The source program is preceded by the implicit outer block head list
on file lfn7.

There is no file for implicit outer blocks.

Same as U=O.

Allows real-integer (or integer-real) correspondence between formal
and actual parameters; if real-integer, perform the conversion.

Forbids any real-integer (or integer-real) correspondence between
formal and actual parameters.

Selection of this option significantly degrades performance of the
program.

Same as X.

BASIC STATEMENT

The BASIC control statement is used to call the BASIC 3 compiler to a control point.
The· minimum memory requirement for BASIC 3 is 35000 octal locations. Ordinarily,
a BASIC program is compiled in place. Since all object-time routines are contained
within the compiler, no external references are generated. However, the user can
include the B parameter to generate relocatable code. When this code is loaded, ex­
ternals are satisfied from the library BASLIB.

The control statement format is:

BASIC, Pl' P2' • • • , Pn·

The following parameters may be supplied.

Pi Description

AS Source program is encoded in extended ASCII character set (program
will run in ASCII mode).

AS=O Source program and data files contain only normal (non-ASCII) char­
acters.

AS omitted Same as AS=O.

B

B=lfn

B=O

1-11-6

R elocatable object code is written on file BIN (this option requires
least 40008 words of additional memory).

Relocatable object code is written on file lfn (this option requires
least 40008 words of additional memory).

Specifies compilation to memory; no relocatable object code is
generated.

at

at

60435400 C

£!..
B omitted

BL

Description

Same as B=O.

Page eject between source, object, and execution output listing. This
option is ignored if output is returned to a time -sharing terminal.

BL omitted Page eject between source and object listing is suppressed; listing is
not burstable. Unless the B parameter is omitted, page eject pre­
ceding execution output is also suppressed.

E

E=lfn

E omitted

EL=W

EL=F

Compiler error diagnostics are written on file ERR S.

Compiler error diagnostics are written on file lfn.

Compiler error diagnostics are written on the file specified by the
L parameter. If L=O, they are written on the file OUTPUT.

Warning diagnostics and fatal compiler diagnostics are written on the
file specified by the E parameter.

Fatal compiler diagnostics are written on the file specified by E
parameter; no warning diagnostics are included.

EL omitted Same as EL=W.

GO Executes compiled BASIC program (if B is specified, the relocatable
binary is loaded and executed; if B is omitted, the compiled-to­
memory code is executed).

GO=O Inhibits execution; neither compiled -to-memory nor relocatable binary
code will execute.

GO omitted Compiled-to-memory code is executed •. Relocatable binary code (B
specified) is not executed.

I

I=lfn

I omitted

J=lfn

. J=O

J omitted

K

K=lfn

K omitted

L

60435400 C

Source input is on file COMPILE. If I is omitted, input is on file
INPUT.

Source input is on file lfn.

Input· will come from the file INPUT.

Run-time input is on file lfn.

No run-time input file is used. If this option is specified, use of the
INPUT statement aborts an executing BASIC program.

R un -time input is on file INPUT.

Execution output is written on file OUTPUT.

Execution output is written on file Hn.

Same as K.

Listable compiler output is written on file OUTPUT.

1-11-7 •

Pi

L=lfn

L=O

L omitted

La

LO=S

LO=O

LO=O/O

LO=O

Description

Listable compiler output is written on file lfn.

No listable compiler output is generated.

For batch origin jobs, this is the same as L.

For time-sharing origin jobs, listable compiler output is suppressed.

Source listing is written on file specified by the L parameter.

Source listing is written on file specified by the L parameter.

Object code and source listing is written on file specified by the L
parameter.

Object code listing is written on file specified by the L parameter.

Turns off all list options.

La omitted Same as La.

PD or
PD=8

PD=6

Sets print density to 8 lines per inch for files specified by the K and
L parameters. The installation default print density is automatically
reset after output is written. .

Sets print density to 6 lines per inch for files specified by the K
and L parameters. The installation default print density is automa­
tically reset after output is written.

PD omitted Sets print density for files specified by the K and L parameters to the
installation default (usually 6).

PS=n Specifies page size as n printable lines per page (4~ n~ 32768).

PS omitted If PD is also omitted or specifies a print density default, the installa­
tion default page size will be used.

If PD specified a nondefault print density, PS is calculated with the
formula:

PS=PD*(default-PS)/ (default PD)

COBOL STATEMENT

The COBOL control statement' calls the COBOL 4 compiler to a control point. The
minimum memory requirement for COBOL is 52000 octal locations. External refer­
ences are satisfied from COBOL.

The control statement format is:

COBOL, P1' P2' - • • , Pn-

If the control statement does not fit on one card, it can be continued on the next card.
However, the last character on the first card must be a separator, such as (, +- or /.

• 1-11-8 60435400 C

The following parameters can be supplied.

Pi

A

B

B=O

B omitted

BUF

C

D

DB

DB1

E

Descripti9 n

Leading blanks are treated as zeros in arithmetic statements and
comparisons.

Relocatable binary object code is written to file LGO. If the B
parameter is omitted~ this option is assumed.

Binary object code is written to file Ifn1. The file name should
specify a mass storage file.

Suppresses binary output of object code.

Relocatable binary file is writen on file LGO.

In COBOL 4~ buffer sizes are based on the record description; a min­
imum size of 514 words has been established. The BUF parameter
selects the version 3 method which does not use record description
or ALTERNATE AREAS to determine the minimum block size.

Specifies that a copy is to be made from source rather than from the
library, which is the default condition.

Inhibits COBOL program execution when an E diagnostic is encountered.

Checks for subscript range errors. If an error is encountered, the
run is terminated. If DB is not specified~ no check is made for
subscript range errors.

Allows generation of object code which calls .paragraph trace feature
to trace the flow of the COBOL program.

Allows output of a . COBOL compilation to be added to the system
library with EDITLIB. This parameter has no application for NOS.

E=program- The main overlay of the program is named by program-:-name, which
name must not exceed five characters.

F

H

I

I omitted

L

60435400 C

All data name entries described as COMPUTATIONAL are interpreted
as COMPUTATIONAL -1 when this parameter is included.

Increases sort efficiency if no OPEN statement is executed during
SORT input or output procedure. If this parameter is not used,
unnecessary space is reserved for all program files. If a file is
opened during. input/ output and H is specified, the run is terminated.

Specifies that compiler input is to be obtained from file INPUT.

Compiler input is obtained from file lfn2. Tape files must be BCD.

Same as I=INPUT.

Specifies that the listing is to be written on file OUTPUT.

Output is to be written on file lfn3.

1-11-9

I

I

I

I
I

Pi

L=O

L omitted

N

OB

OB=lfn4

Description

Suppresses output except for errors.

The L parameter may appear with one of the following suffixes to
produce special listings.

Suffix

C

M

a
R

x

Meaning

Listing <?f items copied from user libraries

Data map

Object code in octal

Data-name and procedure-name cross-reference list with
pointers to source lines

Extended diagnostics

Same as L= OUTPUT.

Directs the COBOL 4 compiler to issue an E type diagnostic if a
non-ANSI feature is detected.

Separates binary overlay segments t from main program and writes
them on LGO.

Specifies that binary output from overlay segments t is to be written
on lfn4.

I OB omitted Same as OB.

P

S

S=filenam

S omitted

SUB

SUBM

T

U

Allows the user to execute a strict ANSI program.

Specifies that external references are to be satisfied from the source
library file COLIB.

External references are to be satisfied from filenam, which contains
the COBOL source library.

Same as S.

Suppresses data division binary output that duplicates output from a
separately compiled main program, except for working storage and
constant sections, so that the subprogram and main program can be
loaded together.

Identifies the COBOL program as a subprogram so that it can be called
from a main program written in another language.

Requests a tape sort rather than a disk sort. This requires four
files which may be assigned to the disk.

Allows use of a collating sequence other than the standard Control
Data sequence.

tNOS does not support segmentation.

1-11-10 60435400 C

Pi

v

W

z

Description

If the loaded program is to be saved· using NOGO with the file name
specified~ the V parameter must be specified for all COBOL/ SORT
programs. Specifying this parameter causes the SORT code to be
included in the program rather than being loaded dynamically.

An independent segment t (priority number 50 through 99) may overlay
or be overlaid by an overlayable fixed segment or another independent
segment. In COBOL version 4 and for ANSI programs~ an independent
segment is made available in its initial state. To override this usage
and provide independent segments in their last used state so that
COBOL 3 programs can be run without change~ the W parameter must
be included.

Ensures compatibility with COBOL version 3 and turns on· the C and
W parameters.

COBOLS STATEMENT

The COBOL5 control statement calls the COBOL 5 compiler to a control point. Ex­
ternal references are satisfied from the library COBOL 5.

The control statement format is:

COBOL5~ Pp P:2~ • • • ~ Pn·

This control statement cannot be continued. The following parameters are supplied.

Pi Description

ANSI

ANSI=s

ANSI
omitted

APO

APO
omitted

Equivalent to ANSI=T.

Language. extensions that do not conform to ANSI X3. 23 -197 4~ COBOL
are diagnosed and treated as errors with severity specified by s.

T Trivial error

F Fatal error

The EL= T parameter must be specified to obtain a listing of diag­
nostics that note language extensions.

Language extensions that do not conform to ANSI X3.23-1974, COBOL
are allowed.

The ASCII apostrophe character with a display code value of 70 (Hol­
lerith 11-8 -5 punch~ sometimes punched by an up arrow key) delimits
nonnumeric literals. in the source program instead of the quotation
mark character of display code value 64 (Hollerith 8 -4 punch~ some­
times punched by a not equal sign).

Nonnumeric literals in the source program are delimited by the quo­
tation mark character that has a display code value of 64.

t NOS does not support segmentation.

60435400 C 1-11-11 •

Pi

B

B=O

B=lfn

B
qmitted

BL

BL
omitted

CC1

CC1
omitted

Cpy

Cpy
omitted

D

D=lfn

D
omitted

DB

DB=B

• 1-11-12

Description

'This option reverses the action of the ' and " so that the ' can be
iused within an alphanumeric literal the same as any other character.

Within a source program, this option can be selected by the QUOTE
IS APOSTROPHE clause of the SPECIAL-NAMES paragraph.

Binary output from compilation is written to file BIN.

No binary output is produced during compilation.

Binary output from compilation is written to file lfn, with lfn being
one through seven letters or digits beginning with a letter.

Binary output from compilation is written to file LGO.

Page eject occurs between various parts of the listing.

Triple space separates the program listing, diagnostics, cross­
reference listing, and any cross-reference map.

Data items described as COMPUTATIONAL are stored and processed
as COMPUTATIONAL-1 items.

Selection of this parameter allows programs written for other com­
pilers to gain the efficiencies of COMP -1 processing.

Data items described as COMPUTATIONAL are stored and processed
as COMPUTATIONAL items.

COpy statements in the source program are compiled using the text
on the UPDA TE random program library file declared with the X .
paJ;'ameter.

COpy statements do not appear in the source program; if they appear,
they generate a fatal compilation error.

Equivalent to D=SSFILE.

Subschema for the CDCS interfaces resides on file lfn, where lfn is
one through seven letters or digits beginning with a letter.

Subschema for the CDC CYBER Database Control System is not used;
if the SUB-SCHEMA appears in the program, it generates a fatal
compilation' error.

Equivalent to DB=DL/SB/B.

Binary executable code is produced regardless of all errors in the
source program.

Lines with errors of severity C or F result in compilation of a call
to an execution time abort routine; execution of those lines aborts the
program. If DB=B is not selected, the first occurrence of a C or F
error inhibits generation of executable code.

Debugging lines in the source program (lines with a D in column 7)·
are compiled as executable code.

60435400 C

p .
.:.J...

DB=SB

DB=TR

Description

If DB=DL is not selected, all debugging lines are treated as comment
lines, unless the WITH DEBUGGING MODE clause appears in the pro­
gram. The presence of the WITH DEBUGGING MODE clause causes
the DL option to be ignored.

Code compiled such that subscript and index references are checked
during execution to ensure that all references to tables are within the
table bounds. An out-of-bounds reference aborts the program with ao
dayfile message that identifies the line with the incorrect reference.

If DB=SB is not selected, subscripted and indexed references are not
checked during execution.

Paragraph trace occurs during execution.

If DB=TR is not selected, paragraph trace does not occur, and any
references to the trace directives called by ENTER statements result
in a fatal error.

Multiple options for the DB parameter can be specified by separating the options with
a slash.

DB omitted
or DB=O

E

E=lfn

E omitted
or EL=O

None of the debugging options applicable to this parameter are selected.

Error information specified by the EL parameter i5' written to the file
ERRS.

Error information specified by the EL parameter is written to the
fpe with the name Ifn, where lfn is one through seven letters or
digits beginning with a letter.

Error information specified by the EL parameter is written to the file
OUTPUT.

When the L parameter specifies full listing, information written to the file specified
by the E parameter is also written to the file specified by the L parameter. If the
Ifn specified by the E parameter is the same as that specified by the L parameter,
information is written only to the error file.

EL

EL=T

EL=W

EL=F

60435400 C

Equivalent to EL=W.

Trivial errors plus all errors of levels W, F, and C are listed.

Level T errors indicate a suspicious usage; although the syntax is
correct, the usage is questionable. EL=T is required to obtain a
listing of the messages reported as UNLISTED NON -ANSI ERRORS on
the diagnostic' summary.

Warning errors plus all errors of levels F and C are listed.

Level W errors indicate the syntax of the statement is incorrect and
the compiler has made an assumption and continued compilation.

Fatal erros plus all level C errors are listed.

1-11-13 •

p.
_1

EL=C

EL omitted

ET=opt

ET omitted

I

I=lfn

I omitted

L

L=O

L=lfn

L omitted

LBZ

Description

~evel F errors indicate an error that prevents compilation of the
statement. Unresolvable semantic errors and propagated errors
caused by earlier level F errors are among the causes of level F
errors.

Catastrophic errors are listed.

Level C errors are fatal to compilation of the current program. Com­
pilation resumes at the Identification Division header of any program
immediately following. without an intervening file boundary.

Levels F and C errors are listed.

Errors are listed on the file specified by the E parameter.

The compiler aborts if the executable code contains any errors of at
least the T, W, F" or C severity indicated by opt. Levels are those
indicated by the EL parameter.

Level T or W errors produce executable binary code. Level E and C
errors produce a short" bad" binary program that causes the loader
to inhibit loading, unless the B option of the DB parameter is
specified.

The job resumes after any EXIT(S) control statement in the job stream.

The next control statement in the job stream is executed after termi­
nation" despite any errors diagnosed during compilation.

Card images of program to be compiled reside on file COMPILE.

Card images of program to be compiled reside on file Ifn" where lfn
is one through seven letters or digits beginning with a letter.

Card images of program to be compiled reside on file INPUT.

Source listing" diagnostics" and information selected by the LO param­
eter are written to file LIST.

No listing is produced.

Source listing" diagnostics" and information selected by the LO param­
eter are written to file lfn, where lfn is one through seven letters.

Source listing" diagnostics, and information selected by the LO param­
eter are written to file OUTPUT.

All leading blanks in numeric fields are treated as zeros in arithmetic
statements and comparisons.

Selection of this parameter significantly slows execution time and in­
creases the size of compiled code.

LBZ omitted Numeric fields that contain blanks are in error.

LO Equivalent to LO=S/M/R.

• 1-11-14 60435400 C

LO=O

LO=M

LO=O

LO=R

LO=S

Description

N one of the information that can be selected by 0, R, M, or S is
listed.

A map that correlates program entities, attributes such as data class
and size, and physical storage is listed.

Generated object code with COMPASS mnemonics is listed.

Cross-reference of program entities and locations of definitions and
use within the program are listed.

Source program is listed.

Multiple options for the La parameter can be selected by separating the options with a
slash.

La
omitted

MSB

MSB
omitted

PD

PD=3

PD=4

PD=6

PD=8

PD
omitted

Equivalent to LO=S.

Program is compiled as a subroutine that includes COBOL initiation.

This parameter should be used only when the COBOL program is
called by a program written in a language other than COBOL. It
should not be used for a COBOL subprogram that is called by another
COBOL program. Only the first COBOL program called in a group
of independently compiled subprograms should specify MSB.

Normal program is compiled.

Equivalent to PD=8.

Listing specified by Land E parameters is double spaced at six lines
per inch.

Listing specified by Land E parameters is double spaced at eight
lines per inch.

Listing specified by Land E parameters is single spaced at six lines
per inch.

Listing specified by Land E parameters is single spaced at eight
lines per inch.

Equivalent to .PD=6.

The PD parameter is ignored for connected interactive terminal listings. Any option
specified by this parameter must be supported by the printer on which the files are
output.

PS=n

PS
omitted

60435400 C

Number of lines on a printed output page is n.

Three lines exist at the top and at the bottom of each page, in
addition to n.

Number of lines on a printed output page is the density specified by

f
(PO parameter) multiplied by (IP. PS/IP. PO)], where IP. PS and
P. PO are two installation parameters.

1-11-15 •

Pi

PW

PW=n

PW
omitted

SB

SB
omitted

Sy

Sy.
omitted

U

U=lfn

U omitted
or u=o

UC1

UC1
omitted

x

X=lfn

X omitted
or x=o

• 1-11-16

Description

Lines of printed output are 72 characters in length.

Lines of printed output are n characters in length. The compiler
reformats listing lines to this length.

Lines of printed output are 136 characters in length.

Program is compiled as a subprogram. If the main program is not
written in COBOL. the MSB parameter must also be used for one of
the subprograms.

Program is compiled as a main program.

Source program is checked for syntax. but executable code is not
generated.

When SY is selected. compilation time is approximately half that
required when SY is omitted.

Source program is compiled and executable code is generated.

Equivalent to U=COMPS.

COMPASS line images of the generated program are written to file
lfn in a format acceptable for the UPDATE utility. where lfn is one
through seven letters or digits beginning with a letter.

The firs·t seven characters from the name in the PROGRAM-ID para­
graph become the deck name on a ~:'DECK image written as the first
item on the file. The second image on the file is ~~IDENT with the
same name as the deck name.

COMPASS assembly language images are not produced.

Ail COMP-1 items are converted to integer format before they are
processed.

Conversion occurs through the use of an· unpack instruction that re­
moves the exponent. UC1 should be used only when files created by
COBOL 4 are being processed under COBOL 5. COMP-1 items in
COBOL 4 have a different format in COBOL 5. Larger and slower
object programs result from this parameter.

All COMP-1 items are processed in COMP-1 format.

Equivalent to X=NEWPL.

The UPDATE random program library containing text for COpy state-.
ments is on file lfn. where lfn is one through seven letters or digits
beginning with a letter.

Equivalent to X=OLDPL.

60435400 C

FTN STATEMENT

The FTN control statement calls the FORTRAN Extended compiler to a control point.
The minimum memory requirement for FORTRAN Extended is 46,000 octal locations.
FTN externals are satisfied from the user library FORTRAN.

The control statement format is:

A=O

A omitted

B

B=lfn1

B=O

B omitted

BL

BL=O

Description

Branches to EXIT control statement if fatal compilation error occurs.
If there is no EXIT statement, the job terminates.

Control transfers to the next control statement, regardless of the
installation default, if fatal compilation errors occur.

Same as A=O.

Object code is written in file LGO.

Object code is written on file lfn1•

Suppresses object code output.

Same as B=LGO.

Generates output listing that is easily separable into components by
issuing page ejects between source code, error summary (if present).
cross-reference map, and object code (if requested), and ensures
that each program unit listing contains an even number of pages (page
parity) by issuing a blank page at the end if necessary.

Listings are produced in compact format.

BL omitted Same as BL=O.

C

C=O

C omitted

Uses COMPASS assembler for compiler-generated code.

Selects the FTN assembler regardless of the installation default.

Same as C=O.

The C option conflicts with the E, Q, and TS options.

o

D=lfn
2

0=0

o omitted

Debug mode of compilation; a minimum of 61, 0008 locations is re­
quired if this option is selected. Debug input is obtained from INPUT
source.

Debug input is obtained from lfn
2

•

Debug statements are ignored.

Same as 0=0.

The 0 option conflicts with the TS option.

60435400 C 1-11-17 •

Pi

E

E=O

"E omitted

EL=~

Description

Compiler-generated object code on file COMPS is output as COMPASS
line images for input to Update.

Compiler -generated object code on lfn3 is output as COMPASS line
images for input to Update.

Normal binary object file is generated.

Same as E=O.

Lists diagnostics according to list specification~:

~ De scription

A Lists diagnostics indicating all non-ANSI usages, as well
as fatal diagnostics. Also, lists informative diagnostics
if compiling under OPT=O, 1, or 2; lists note and warn­
ing diagnostics if compiling in TS mode.

I Lists informative and fatal diagnosti~s if compiling under
OPT=O, 1, or 2; lists note, warning, and fatal diagnostics
if compiling in TS mode.

N Lists note, warning, and fatal diagnostics if compiling in
TS mode; lists fatal diagnostics if compiling under OPT=
0, 1, or 2.

W Lists warning and fatal diagnostics if compiling in TS
modes; lists fatal diagnostics if compiling under OPT=
0, 1, or 2.

F Lists fatal diagnostics.

EL omitted Same as EL=I.

ER Includes code for object time reprieve.

ER=O No object time reprieve code is included.

ER omitted The same as ER if TS=O or OPT=O. The same as ER=O if OPT=l
or 2.

G

G=lfn4 /ovl

G=O

G omitted

GO

GO=O

• 1-11-18

Loads the first system text overlay from the sequential binary file
SY STEXT. A maximum of seven system texts can be specified by
any combination of the G, S, and C parameters.

Loads the fir~t system text overlay from the sequential binary file
lfn4•

Searches the sequential binary file, lfn4, for a system text. overlay
with the name ovl and loads the first such overlay encountered.

No system text is loaded.

Same as G=O.

Binary object file is loaded and executed at end of compilation.

Binary object file is not loaded and executed.

60435400 C

Pi Description

GO omitted Same as GO=O.

I

I=lfn5

I omitted

L

L=lfn6

L=O

L omitted

LCM=D

LCM=I

LCM

LCM omit­
ted

Source input is on file COMPILE.

Sourc e input is on file lfn5 .

Same as I= INPUT.

Listable output (specified by list control options BL, EL, OL, R,
and SL) is to be written onto file OUTPUT. If list control options
are not specified, the listing consfsts of the source program, infor­
mative and fatal diagnostics, and a short reference map.

Listable output is to be written onto file lfn6•

Fatal diagnostics and the statements that caused them are listed -on
the file OUTPUT. All other compile -time output, including inter­
mixed COMPASS, is suppressed. List control options are ignored.

Same as L=OUTPUT.

Selects 17 -bit address mode for level 3 data. This method produces
more efficient code for accessing data assigned to level 3. User ECS
field length must not exceed 131,071 words. If the LCM parameter is
omitted, this option is assumed.

Selects 21-bit address mode for level 3 data. This mode depends
heavily upon indirect addressing. LCM=I must be specified if the
execution ECS field length exceeds 131,071 words. In TS mode, all
LCM addressing is done in 21-bit mode, regardless of the LCM
parameter.

Same as LCM=D.

Same as LCM=D.

In time-sharing mode, all addressing is done in 21-bit mode, regardless of the
LCM specification.

ML

ML=nnn

Current data in the form yyddd is used for the MODLEVEL micro.

Specifies nnn as the value of the MODLEVEL micro used by COMPASS.
nnn consists of one to seven alphanumeric characters.

ML omitted Same as ML.

OL Generated object code is listed on the file specified by the L
parameter.

OL=O Object code is not listed.

OL omitted Same as OL=O.

60435400 C 1-11-19 •

Pi Description

OPT=n Level of optimization:

n=O Fast compilation (automatically activates T option).

n= 1 Standard compilation and execution (default value).

n=2 . Fast execution. OPT=2 is equivalent to OPT.

OPT omit - Same as OPT= 1.
ted

P Page numbering is continuous from subprogram to subprogram. in­
cluding intermixed COMPASS. If P is omitted. page numbers begin
at 1 for each subprogram.

p=o Page numbers begin at 1 for each subprogram.

P omitted Same as P=O.

PO Same as PO=8.

PO=6 Print density 6 lines per inch.

PD=8 Print density 8 lines per inch.

PD omitted Same as PD=6.

PL=n

PL=nB

n is the maximum number of records produced by the user program
at execution time which can be written on the file OUTPUT. n does
not include the number of records in the source program listing
and compilation and execution time listings: n ~ 999 999 999.

An octal number must be suffixed with a B; n ~ 77 777 777.

PL omitted Same as PL=5000.

PS=n n is the maximum number of lines per page.

PS omitted Same as PS=60.

PW

PW=n

PW omit­
ted

Q

Q=O

• 1-11-20

Specifies 72-character page width. This option is valid only for time­
sharing origin jobs.

Specifies page width of n characters (50~ n~ 136). This option is
valid only for time-sharing origin jobs.

Same as PW=1'26 if the output goes to a printer. Same as PW=72 if
the output goes to a terminal.

Compiler performs full syntactic scan of the program. but no object
code is produced. No code addresses are provided if a reference
map is requested. This mode is substantially faster than a normal
compilation. but it should not be selected if the program is to be
executed.

Normal compilation •

60435400 C

~ Description

Q omitted Same as Q=O.

The Q option conflicts with the B, C, GO, OL, TS, and E options.

R=n

R omitted

ROUND=s

ROUND=O

ROUND

ROUND
omitted

S=ovl

S=Hb/ovl

S=O

S omitted

SEQ

Selects the kind of reference map required:

n=O No map

n=1 Short map (symbols, addresses, properties, and a DO­
loop map)

n=2 Long map (short map plus references by line number)

n=3 Long map with printout of common block members and
equivalence groups

In time-sharing mode, R=3 and R -2 are the same. Common and
equivalence groups are not listed.

Same as R=1.

Directs the compiler to produce code that rounds arithmetic operations
involving the following operators: (s=~:'i+ or -).

Computation for the indicated operators is not rounded.

Implies ROUND=+-~:'i

Same as ROUND=O.

The system text overlay, ovl, is loaded from the job's current
library set.

The system text overlay, ovl, is loaded from lib. lib can be a
user library file or a system library.

When COMPASS is called to assemble any intermixed COMPASS pro­
grams, it will not read in a system text file.

Same as S=SYSTEXT if G=O. Same as S=O if Glo.

Source input file is in sequenced line format. Specifying this option
automatically activates the TS option.

SEQ=O Source input file is in standard FORTRAN format.

SEQ omit- Same as SEQ=O.
ted

The SEQ option conflicts with the OPT= 0, 1, or 2 option.

SL· Source program is listed on the file specified by the L parameter.

SL=O Source program is not listed.

SL omitted Same as SL.

60435400 C 1-11-21 •

Pi Description

SYSEDIT All input/ output references are accomplished indirectly through a table
search at object time. File names are not entry points in main pro­
gram, and subprograms do not produce external references to the
same file.

SYSEDIT=O Input/output references accomplished directly; file names are used as
entry points in the main program, and subprograms produce external
references to the file name.

SYSEDIT Same as SYSEDIT=O.
omitted

This feature is used primarily for system-resident programs.

T

T=O

T omitted

TS

If this parameter is specified, full error traceback occurs. This is
primarily used for programs in debug stages. Selecting the D param­
eter or OPT=O automatically activates the T option.

No traceback occurs when an error is detected.

Same as T=O.

Time -sharing mode. Compilation speed and field length are optimized
at the expense of execution speed and field length. TS mode is
preferable to the optimizing compilation modes (OPT-l, 2, or 3) for
the debugging stages of a program. Specifying the TS option together
with the C, D, E, or Q option constitutes a fatal control statement
error.

TS omitted Same as specifying OPT=1.

UO This allows the compiler to perform potentially unsafe optimizations.
The UO parameter is ignored unless OPT=2 is also specified.

UO=O Unsafe optimization is not performed.

UO omitted Same as UO=O.

X File OPL is the source of external text (XTEXT) when location field
of XTEXT pseudo instruction is blank. Only one X parameter may
be specified.

X=lfn7 External text on file lfn7 •

X omitted External text is on OLDPL.

This feature is for COMPASS subprograms only.

Z

Z=O

• 1-11-22

When Z is specified, all subroutine calls having no parameters are
forced to pass a parameter list consisting of a zero word. This
feature is useful to COMPASS-coded subroutines expecting a variable
number of parameters. Z should not be specified unless necessary,
since programs require less memory if Z is omitted.

A zero word parameter list is not passed.

60435400 C

Pi Description

Z omitted Same as Z=O.

SORTMRG STATEMENT

The SORTMRG control statement calls Sort/Merge to process a logical record of di­
rectives. The minimum memory requirement for Sort/Merge is 25.000 octal locations.

The control statement format is:

SORTMRG(pp P2' • • ., Pn)

~

I omitted

MO=n

Description

Sort/Merge directives are on file COMPILE.

Sort/Merge directives are on file Ifn t with the following rewind options.

~ Description

R File is rewound before opening. If system INPUT file
is indicated, R should not be specified.

NR File is not rewound before opening. This option is
assumed if r 1 is not specified.

Same as 1= INPUT ..

Intermediate merge order, 2~ n~ 64. In general, higher merge orders
produce faster sorts at the expense of greater field length require­
ments. . If insufficient core is available to merge at the requested
order, a fatal error occurs, and a diagnostic indicates how much ad­
ditional core is required.

Intermediate merge order, 2~ n~ 64. If insufficient core is available
to merge at the requested order, merge will take place at a smaller
order, and an informative diagnostic is issued.

MO omitted The installation default merge order is used (release system default
is 5).

o omitted

OWN

60435400 C

Listings will be written to the file OUTPUT.

Listings are written to file Ifn
2

with the following rewind options.

r2 Description

R File is rewound before opening. If system OUTPUT
file is indicated, R should not be specified.

NR File is not rewound before opening. This option is
assumed if r 2 is not specified.

Same as O=OUTPUT.

Owncode binaries are on file LGO. If the OWN parameter is omitted,
owncode binaries are on file INPUT.

1-11-23 •

.!l
OWN=lfn3 '
r3

Description

Owncode binaries are located on file 1fn3 with the foHowing rewind
options.

.::.2.. Description

R File is rewound before opening. If system INPUT file
is indicated, R should not be specified.

NR File is. not rewound before opening. This option is
assumed if r3 is not specified.

OWN omit- Owncode binaries are on file INPUT.
ted

• 1-11-24 60435400 C

CHECKPOINT /RESTART 12

A job may be terminated at any time as the result of system l operator, or programmer
error. For some jobs l it becomes more advantageous to accept the overhead of check­
point procedures than to run the risk oof losing the entire job output. The checkpoint/
restart feature is implemented, through the CKP control statement and the RESTART
control statement.

CKP STATEMENT

I NOTE I
For information concerning security restrictions
associated with the use of these control statements,
refer to Security Control l section 3.

The CKP control statement causes a checkpoint dump to be taken.

The control statement format is:

lfni Specifies a file to be included in the checkpoint dump. If no files
are specified, all files local to the job at the time the CKP statement
is processed W;ill be checkpointed.

Each time a CKP statement is processed, the system takes a checkpoint dump. The
dump is written on the tape or mass storage checkpoint file specified on a REQUEST,
ASSIGN. or LABEL control statements with the CK parameter. The dump consists of I
a copy of the user's central memory, the system information used for job control, and
the names and contents of all assigned files explicitly or implicitly identified by the
CKP statement. These files are:

• INPUT, OUTPUT, PUNCH, PUNCHB I PBI CCCCCCO, and LGO. These files
are always included in the checkpoint dump.

• Common files, library type files, working copies (J.1 J.uQlreCl: access files, and
some direct access files. If one of these types of files is specified on the
CKP statement, it is, included in the checkpoint dump, and all other files of
that type are excluded. If no files are specified, all files of these types
ass igned to the job are included in the dump.

Each checkpointed file is copied according to the .last operation performed on it. If
the last operation was a write l the file is copied from the BOr to its position at
checkpoint time; only that portion will be available at restart time. The file is posi­
tioned at the latter point.

If the last operation was a read and the Eor was not detected, the file is copied from
its position at checkpoint time to the EOI; only that portion will be available at restart
time. The file is positioned at the former point. If the last operation was a read
and the EOr was detected, no copy is performed.

60435400 C 1-12-1

The exception to this rule is the type of operation performed on execute-only direct
access files. If a dump is specified f~r this type of file, its name and associated sys­
tem information are copied but the contents of the file. itself is not copied. Thus, if
the use~ attempts to resume from such a dump, RESTART will be unable to retrieve
that file and will abort. The user can avoid this by selecting the NA and FC options
of the RESTART statement and retrieving the file himself.

If the checkpoint file is to reside on mass storage, the user must include a SAVE or
DEFINE control statement in the checkpoint job and a GET or ATTACH control state­
ment in the restart job.

If the checkpoint file is to reside on magnetic tape, care should be taken to use a
labeled or nonblank tape. An unlabeled blank tape (one which has never been used)
cannot be specified as the checkpoint file since the checkpoint program attempts to
read the tape to determine the number of the last checkpoint. The tape subsystem
then aborts the job with a blank tape read message.

The system numbers checkpoints starting at 1 and increments by 1 to a limit of 4095.
At this point, a second cycle of numbering begins, again starting at 1. An example
showing how to restart from a specific checkpoint is given in the RESTART control
statement section.

RESTART STATEMENT

The RESTART control statement directs the system to restart a previously terminated
job from a specified checkpoint.

The control statement format is:

RESTART(lfn, nnnn, xi)

1-12 -2

lfn Identifies the checkpoint file; the user must have write permission
to lfn.

nnnn

x.
1

Number of the checkpoint from which to restart; if nnnn is ~:~, the
last available checkpoint on lfn is used; if nnnn is omitted, the
first checkpoint is used. The nnnn parameter can be obtained
from the CHECKPOINT nnnn COMPLETE messages issued to the
user's dayfile in response to CKP control statements.

Any of the following in any order:

RI If this parameter is included, the control statement file
on lfn is not restored. The control statement file of

NA

FC

this restart job at its current position is used instead.
If this parameter is not included, the entire control
statement file of the checkpointed job is restored and
set to its position at checkpoint time; any control state­
ments following RESTART are not processed.

If this parameter is included, RESTART does not abort if
a required file is not available. Also, if NA is included
and a read parity error occurs in an attempt to obtain
a file from checkpoint nnnn, RESTART selects check­
point nnnn-l if it is available.

Normally RESTART restores all files included in the
specified checkpoint. However, if this option is select­
ed, RESTART first checks if a file is already local to
the restart job. If it is, RESTART does not replace
it with the file on the checkpoint dump.

60435400 A

The user must assign lfn to his job before the RESTART statement is processed. He
must include a REQUEST, ASSIGN, or LABEL control statement if lfn resides on mag­
netic tape or a GET or ATTACH control statement if ~fn resides on mass storage.

Checkpoint dumps are numbered in ascending order from 1 to 4095. When nnnn=4095,
the numbering sequence begins again at nnnn= 1. The value of nnnn depends on the
structure of the checkpoint file, as defined by the CK and CB parameters of the RE­
QUEST, ASSIGN, or LABEL control statements.

If CK was specified when the checkpoints occurred, each dump is appended to the
checkpoint file, and therefore, all dumps up to the time the job aborted are available
for restart. The user may specify a particular checkpoint dump in the following man­
ner.

Assume a CK file of the name CHKFILE is being used and checkpoint number 4095 has
been passed. The job is terminated at checkpoint number 10 in the second cycle of
numbering. To restart the job from checkpoint 4 of the second numbering cycle, the
following control statements can be used.

SKIPR(CHKFILE,8196)

COPYBR(CHKFILE, AA, 2)

RESTART(AA •••)

There are two records for every checkpoint, and
4098 checkpoints must be skipped to reach check­
point 4 of the second numbering cycle.

The fourth checkpoint is copied to file AA. At this
point, file CHKFILE is not positioned correctly for
subsequent checkpoints. If the user intends to continue
checkpointing on this file, a

BKSP, CHKFILE.

statement should be included.

The job is restarted from file AA using the fourth
checkpoint.

If CB was specified when the checkpoints occurred, each dump is- written over the
preceding dump, and therefore, only the last dump is available. If two REQUEST,
ASSIGN, or LABEL statements are submitted, successive CB-type dumps are alter­
nated between two files; therefore,. the last two dumps are available. t

All files copied by RESTART are made local to the restart job. Therefore, the user
must make sure that any direct access files are not lost. For example, assume that
direct access files X, Y, and Z are attached to a job. The job is then checkpointed
and X, Y, and Z are copied to the checkpoint file lfn. To retain these files as direct
access files during restart, the user should include the following sequence of control
cards.

PURGE(X, Y, Z)

DEFINE(X, Y,Z)

RESTART (lfn, nnnn, Xi)

If the information table associated with a file was included on the checkpoint file, but
the file itself was not copied, RESTART issues the appropriate commands to retrieve
the file.

t If alternate checkpoint files are used and a read parity error occurs in an attempt to
read the last checkpoint, RESTART will abort even if the NA option was selected.

60435400 A 1-12-3

DEBUGGING AIDS 13

This section contains a description of central memory dumps and their use as a debug­
ging aid. This information should be of considerable assistance to the user in finding
errors in his program.

CENTRAL MEMORY DUMPS

The first line of a dump gives the boundaries of the memory that is dumped, relative
to the user's field length. Four central memory words are printed per line, with the
address of the leftmost word printed on the left-hand side of the page. When the phrase
DU PLICATED LINES appears within the dump, all groups of four words not printed are
exactly like the last group of four words. Each word is divided into four groups of
15 LO bits, with the octal representation printed. Figure 1-13-10 is an eX8;mple of a cen­
tral memory dump. Section 9 describes the options of the DMP control statement that
can be used to obtain various dumps.

The user may also dump his exchange package. Figure 1-13-1 illustrates the format of
the actual exchange package.

n

n+l

n+2

n+15

59 5'3 35

~ P AO

~ HAeM Al

~ F I;c i\!I A2

~~~ A3 

HAEC'S A4 

FLEes A5 

1\1 A A6 

~ A7 

XO 

Xl 

X2 

X:3 

X4 

X5 

X6 

X7 

Figure 1-13-1. Exchan~e Package 

17 o 
.. -
131 

B2 

B3 

134 

135 

86 

B7 

60435400 A 1-13-1 



P Program address currently being executed 

RA Reference address, beginning address of the associated field length 
[central memory (CM), extended core storage (ECS)] 

FL Field length 

EM-M 

EM-N 

MA 

An 

Bn 

Xn 

Program error exit mode (refer to section 6) 

Hardware error exit mode (refer to section 6) 

Monitor address 

Address registers 

Increment registers 

Operand registers 

When the user requests this form of a dump. he also receives the following information. 

• The contents of memory at the address contained by the A registers, 
identified as (An) 

• The contents of RA (reference address) and RA+l, identified as (RA) and 
(RA+l), respectively 

• 40 8 locations before and after the address contained in P (100 8 locations total) 

Figure 1-13-9 illustrates an ,example of this exchange package dump. 

GENERATING MEANINGFUL DUMPS 

The following methods are used to generate meaningful central memory dumps. 

e Error Exit Control 

By using the EREXIT macro within his COMPASS program, the user can direct 
execution when certain errors occur, rather than having his program completely 
halt execution. This enables him to use it as a checkpoint method (that is, to 
save generated data to this point). It could also enable him to do further cal­
culations or to write pertinent data to an output file. Refer to section 6, 
volume 2 for a description of' this macro. 

• EXIT /NOEXIT /ONEXIT Control 

• 

1-13-2 

Once program execution ceases, due to an error condition, and control state­
ment processing is resumed, the user can direct which statements are to be 
processed through the us e of the EXIT, NOEXIT, and ON EXIT statements. 
Upon an error condition, the user can issue the DMP control statements to 
obtain appropriate dumps. For a detailed description of these control state­
ments, refer to section 6. 

Dumps may also be generated under control of the user's program through the 
use of the SYSTEM macro. The FORTRAN user can generate dumps by calling 
the DUlVIP subroutine. 

60435400 A 



READING eM DUMPS 

Figures 1-13-2 through 1-13-10 are output from a FORTRAN program source deck 
processed by the following sequence of control statements. 

TEST(CM50000, TI0) 
USER(ABCD, PASS, FAMA) 
SETCORE, O. 
MAP. 
FTN. 
LGO. 
OVLA. 
DMP. 
DMP,1000. 

The source deck in the example consists of four parts. 

• Ma in program (rna in overlay) 

• Function subprogram 

• Subroutine subprogram 

• Primary overlay 

Each part is listed separately followed by the corresponding address assignments, 
such as variable assignments, program length, common blocks, etc. (refer to 
figure 1-13-2). 

Figures 1-13-6 and 1-13-7 illustrate the load map generated by the MAP control state­
ments. The load map gives the address and references of all entry points. Maps are 
listed separately for each overlay. Output generated by the program follows the load 
map (refer to figure 1-13~8). 

Figures 1-13-9 and 1-13-10 illustrate central memory dumps generated by theDMP. 
and DMP,1000. control statements, respectively. 

The~ following examples illustrate the use of these dumps to obtain specific information. 

60435400 A l-l3-3 



Example 1: (Finding Data Locations in a Core Dump) 

Referring to figure 1-13-2, the variable I is used as the control variable in the DO 
loop defined by statements 10 through 20. To find the value of I at job termination, 
the following steps must be performed. 

1. Find I in the variable assignments (lower half of figure 1-13-2), noting I is 
at relative address 41678• 

2. Find the first word address (FWA) of the main overlay TESTA. (Refer to the 
load map, figure 1-13-6.) The FWA of TE:?TA is 1438• 

3. Add (1438 + 4167 8 = 4332 8) to obtain the absolute address of I. 

4. In figure 1-13-10, address 4332 contains 00138 (1110). This should be the 
last value of I. 

Example 2: (Finding Data Locations in a Core Dump) 

To find the variable B(3), the following points must be considered. 

• Find B in the variable assignments (lower half of figure 1-13-2). The value is 
12, which means that B begins at relative location 128 of common block AAA. 
By referring to the map (figure 1-13-6), note that AAA begins at absolute 
address 1018. Therefore, 1018 + 128 (relative location of B) equals 1138, 
the beginning address of array B. B(1) is 1138, and the address of B(3) is 
1158. 

• The location in core of the B array is illustrated in figure 1-13-10. 

Example 3: (Finding an Address Within the Program) 

Referring to figure 1-13-9, note that the program stopped at address 10114 (the value 
of P). To find where this is in the program, the following points must be considered. 

• Figure 1-13-6 or 1-13-7 contains the routine addresses. 

• Figure 1-13-6 illustrates that routine SYS. RM is at address 10114. This 
means the program ended in routine SYS. RM. 

1-13-4 60435400 A 



5 

10 

15 

ZO 

25 

OVERlAYCOVLA,O,O) 
PROGRAM TESTA(I~PUT,OUTPUT) 

COHI1'ONIIE C1 0 D) 0 

COMMONI AAA/A (l0), Be 10), C (3,3) 
COMMONI BLOCKA/BL< (5t 
DIMENSION N (50) 
DATA (A(U,I=1,10)/l.,Z.,3.,4.,5.,6.,7.,8.,9.,10.1 
DATA (BCI),I=1,5)/100.,ZOO.,31J0. ,400. ,51J0.I 
DATA (B(I),1=6,10)/600.,700.,800.,900.,1000.1 
DATA CC 1,U ,CCl,2),C(1,3)/l01. ,202.,303.1 
DATA C(Z,U ,C(2,2),C(2,3)12.1,2.2,2.31 
DATA C(3,1),C(3,Z),CC3,3)/3.1,J.Z,3.11 
DATA (NCJ),J=t,50t/SQ·1Z31 
CALL OVERLAY(4HOILA,1,0) 
CALL PRNT (BLOCKA) 
DO 30 1=1,10 
ACU=AC n.A (U 
A(I)=TRYlACI),AeI») 

30 B(I)~TRI(A(I),A(I» 
DO 35 J z l,5 

35 8lKCJ) ~ A(J)+ACZ·J) 
CALL OVERLAYC4H~VLA,1,0) 
CALL PRNT(I)LOCKU 
cu,U=J 
END 

SYHBOlIC REFERENCE HAP CR=l) 

ENTRY POINTS 
4107 TESTA 

V~RIABLES S" TYPE ~ELOCATION 

0 A REAL ARRAY AU 

rael'U,e .ddress location of variable B 

12 B REAL ARRAY AAA • 
0 Bll( REAL ARRAY BLOCKA 

'Z4 C REAL ARRAY AAA 
It 167. I INTEGER 

416~ 9LJCKA REAL 
o E REAL ARRAY I I 

4170 J INTEGER 
INTEGER ARRAY It 171\N , 

---.---------------------Relative address location of variable I 
FIL:: NAMES HOOE 

0 INPUT 

EXTERNALS TYPE 
OVE~LAY 
TRI REAL 

STATEMENT L'BELS 
0 30 

lOOPS. LABEL INDEX 
4115 30 • I 1.;13,. 35 J 

COHMON BLOCKS lENGTH 
I I 100 
AU 29 
8l0C1(A 5 

STATISTICS 
P~OGRAM LENGH 
BUFFER lENGTH 
eM lABELED CO~MON LENGTH 
eM BLANK COHHON LENGTH 

201tl OIHPUT 

ARGS 
3 
'2 

FRO'1-TO LE~GrH 
16 19 149 
2021 48 

154~ lOB 
410313 2115 

42B JIt 
144B 100 

0 35 

PROPEUIES 

INSUCK 

P~'fT 
TRt 

E)(f QEFS 

REAL 
1 
2 

Figure 1-13 -2. Main Program of Main Overlay (0,0) 

60435400 A 

Common block 
containing variable B. 

1-13- 5 



1 

5 

FUNCTION T~YCA,8) 
10 TRY = SQ~T(A)+Sl~T(B) 

RETURN 
ENTIn TRI 
IF (A.LE. B) 10,20 

20 TRY = SQ~TCA)-SQ~TCB) 
RETURN 
END 

SYHBOLIC REFERENCE HAP CR=1) 

ENH.Y POINTS 
14 TRI It TRY 

VARIABLES SN TYPE RELOCATION 
0 A REAL r:.P. 

34 TRY REAL 

E)(TE~NALS TYPE ARGS 
SQ~T REAL 1 LIa~ARY 

STATEMENT LABELS 
7 10 

ST ATISTICS 
PROGRAH LENGTH 359 29 

o B REAL F. P. 

0 20 INACTIVE 

Figure 1-13-3. Function Subroutine of Main Overlay (O~ 0) 

1 

5 

SUBROUTINE p~Nr(~) 
COHMON/IO C1 0 0) 
COMMONI AAAI P (29) 
COHMON/ A/SUB C~) 
B=O 
00 50 1=1,29 

50 B=B+pn» 
PRINT 55,B, CSUBCU,I=1,S) 

5~ FaRHAT (1X,6F17.7) 
10 RETURN 

END 

SYMBOLIC REFERENCE MAP CR=l) 

ENTRY POINTS 
3 PRNT 

VARIABLES S~ TYPE 
o A 
o D 
o P 

FIL~ NAHES 
QUTPUT 

STATEMENT LABELS 
0 50 

. LOOPS LA~EL 
11 50 

COHI10N BLOCKS 
I I 
AlA 
A 

STATlSTICS 
PROGRAI1 LENGH 

REAL 
REAL 
REAL 

MODE 
FHT 

INDEX 
I 

LENGTH 
100 

29 
5 

CM LABELED CO~HON LENGTH 
C~ BLANK COMHON LENGTH 

RELOCUION 
.UN USED F. P. 

ARRAY /, 
ARRAY AAA 

21t 

FROM-TO LE~GTH 
£, 7 3B 

30~ 21t 
1t2!3 31t 

11+1t6 100 

2& B 
27 I 
o StH 

~5 FHT 

PROPEHIES 
INSTACI( 

REAL 
INTEGER 
REAL ARRAY 

Figure 1-13-4. Subroutine of Main Overlay (0,0) 

A 

1-13-6 60435400 A 



1 OVERLAY (OVL A, 1, 0) 
PROGRAM OVL10 
COMH ONI AUI W (29) 

5 
PRINT 105,(H(I),I=1,7) 
PRINT 105,(HCI),I=8,14) 
PRINT 1D5,CW(I),I=15,21) 
PRINT 105,(W(I),I=22,26) 
PRINT 106,(WC2CJJt 

10 
lD5 FORHATC1X,7F11.7) 
106 FORHAT (4X,F17.7) 

END 

SY~BOlIC REFERENCE HAP (R=1) 

ENTRY POINTS 
3 ·OVL1D 

VARIABLES 
ItT I 

S" TYPE 
INTEGER 

FILE NA!tES 
OUTPUT 

STATEMENT LABELS 

HOOE 
FHT 

43 105 ~HT 

COHMON BLOCKS LENGTH 
UA 29 

STATISTICS 
. P~OGRAH. LENGH 
BUFFER L~~GTH 
eM LABELED CO~HON· LENGTH 

RELOCATION 

478 
16 

3SI) 

45 106 

o II REAL 

F~T 

Figure 1-13:-5. Main Program of Primary Overlay (1,0) 

AR~AY AU 

60435400 A 1-13-7 



LOAO "'AP - T::'5TA 
OV~~LAye)VLA,D,DJ 

OVERLAyeJVlA,D,O) 

=~" JF Ti~ LJA~ 101 
L~A+1 OF THE LOAD 17012 

r~ANiFER AJD~E~5 -- TE3T4 ~2~Z 

,:"0(;< 

IAAAI 
laLOCKAI 
TESU 
TRY 
I AI 
?~NT 

118.10.1 
IIOCON.I 
~0'1l0= 
:LTOJT= 
=~TA;>= 

::HSY5= 
:;~TFIT= 
<O:J::~= 

JJTC= 
J~TCOM= 
H=:~l.AY 

n~r 
3,(5AIO= 
S,(S=15T 
S,(S.~M 

J~l.O~O 
IJ'1P;i.RM! 
.. aUF. sa 
I ~(JN. iH'1 
~I:l.~M 
IAD3.R~1 
:':H.~H 
't:lIIE.R'1 
::I-iW~.SQ 
'tCT.~M 
II1EMC.~t11 
IOPES.FO! 
! JPE:~. FOI 
JPEN.RM 
BJ3. RI'! 
)PEN.sa 
JP£X.SQ 
OUT. RTf 
~~[Q.~H 
IER'1. RI1I 
IPUf.F'OI 
PUT.5Q 
'U~ • .:i~ 
I:;LSF.FO! 
::LSF.R'1 
:LSF.SQ 
1::l.SII.FO! 
::l.sv.sa 
!.:oH.FOI 
I:;ET.BTI 
I;;:::T.RTI 
:;e;T.5Q 
Z.SQ 
FSJ.5Q 
HH.SQ 
Ll(E~.SQ 

"'::DX.SQ 
I SI(F\ •• FO! 
HFL. SO 
/I 

AJU~ESS 

101 
136 
1"3 

.. 1+22 
1t",~7 

It 1+ 64 
1t514 
1t650 
:.712 
'0715 
:..300 
~057 
t.533 
(,~75 

7254 
741+6 
7021 
7761+ 

10027 
1i103D 
10112 
l01b2 
10,+40 
10ltS1 
10& olt 
lU&12 
10blto 
10656 
11262 
1131+& 
l1JS5 
11b10 
11613 
11614 
11623 
12057 
12152 
12432 
12441) 
12457 
12521 
1?S22 
12731 
1 "030 
14310 
11.317 
1 .. 342 
1 .. 473 
14~02 
1t.b25 
14634 
1t.61t1 
14652 
E701 
16002 
HUO 
16221t 
16444 
1',610 
1·i&17 
166Gb 

LENGH 

lj 
~ 

4257 
3) 

J(J 
13!t 

42 
bJ 

311 
351 
O:H .. ~ 
.. 57 
172 
153 
14J 

4j 

1 
&2 
50 

2')'> 
11 

1Jl 
~ 

J:. 
1(J 

Ito .. 
& .. 

233 
J 
1 
7 

23'+ 
7J 

200 
1. 
11 
42 
1 

1271 
7.(1) 

7 
?l 

131 
7 

lZJ 
7 
j 

11 
1027 

101 
1(J·) 
11 .. 
220 
1'+-+ 

7 

Sl.-::'O~H~'-J 

SL-::'O~HA'-J 

SL-FJU~A't 
SL-::'O~HA" 
5L-=D~nA'~ 
SL-::'O~HA'-J 
SL-::'O~HA~ 

SL-FOU'i:At 
SL-FO~HA'-J 
SL-Fon ~A'I 
:)L-FO(T~A'I 
SL-FO~HA'I 
.:iL- )ySIJ 
"'L-iYSIJ 

SL-:iY:iIJ 

SL-HSIJ 

SL-SYSl) 
,)L-HSI!) 
SL-HHJ 
SL-:; '(Sla 

SL-;,(SI') 
SL-HSIO 
SL-:iYSI') 
SL-)y5IJ 

SL-SYSIJ 

;L-iY.iIJ 
5L-HSIJ 

::iL-H5.l) 
SL-)ySIJ 

SL-:;YSIJ 
SL-SYHJ 
SL-H5l0 
SL-iYSIJ 
SL-i,(SIJ 
:il-H:;J) 

SL-iYSIJ 

DATE P~)C~SR VER LEVEL HA~~WAR~ 

7~/OU2q q.., 
7~/0;l2q FT.., 

75/0$/27 ~J1PASS 
75/03/27 ~J~PASS 
7?/0$/27 :J~PASS 
75/03/27 :J1PASS 
7~/03/27 :J~PASS 
7-5/0$127 ;J1PAS5 
75/03/2 7 :J~PASS 
'~/03/2? ;)1PASS 
7!i/(J3127 :')1 PASS 
75/0$/27 ~)1PASS 
75/(J3/27 :J1PASS 
7S/03/~7 :J1PASS 
7~/Oj/27 ;J1PASS 
7S/(J3/!7 C)1PA~S 

7~/(J3/2' :J1PAS5 

7~/03/27 ;)~PA~S 

7~/(J3/~1 :)1PASS 
7jl03/2' ~)~PAS5 
7~/03/27 :)1P~SS 

7~/(J1/27 :J1P~S5 

7j/01/21 :J1PASS 
75/03/~7 :)1PASS 
7~/03/27 j)1PASS 
75/03/~7 ~)1P~SS 

75/03127 ::)1PASS 
75/03127 :) ".Pf.SS 

75/05127 :l1PASS 
7~/03/?7 :)"pn')s 

7~/03/~7 :)1pnss 

7~/03/?7 :)1PASS 
7~/03/27 :)1PASS 
75/U3/?' ::J4PASS 
'7/03/27 ;J1P~SS 
7~/03/2~ :J"PASS 
7~/(J3!27 ;J1p~SS 

1t.1t Ult01 
1t.1t U4(J1 

'+.It Ult01 

J. 75086 
J. 7508& 
J. 7508& 
3. 75(J8& 
3. 7503& 
3. 75086 
J. 750A& 
3. 75(Jac 
3. 7508& 
3. 750136 
J. 750'3& 
3. 1 S(JBE­
l. 750S& 
3. 7508& 

3. 15086 

J. lS(J86 

J. 150S6 
3. 750'3& 
3. 75(JA6 
J. 75080 

J. 7508& 
3. 7508& 
3. 75036 
3. 7:i08b 

J. 7501!6 
3. 750"6 

3. 75D~G 
3'. 1508& 

3. 7508f 

3. 75086 
3. 1508& 
3. 750'36 
J. 7503& 
J. 7508& 
3. 75086 

J. 7508f 

605l( I 
6&OX I 

&t&X 

7~/0~/29. 11.01.07. 

CO'1HENTS 

O;)T=l 
OPT=1 

OPT=1 

PAGE 1 

CO~HON C~OED 1/0 RJJTINES AND CONSTANTS. 
CJ~HON FLOATING OUTPJT GOO£ 
C~ACK APLrST ANU FO~~AT FOR KODER/KRAKER. 
FJ~T~AN O~JECT LIa~A~Y UTILITIES. 
LJ~ATE AN rIT GIVEN A FILE NAME. 
OUTPJT Fo~r.Ar INTE~p~ETER. 
~JR'tAT1:J W~IrE Fn~rRAN RECORO 

CO~MON OUTPUT COOE 
Oi~RLAY LOAOING ~OJrINE. 
CJ~PUTL THL ;iQUA~E ~vOT OF X. OPT=ALL. 
LI~K BETWe[N SYS=AID AND INITIALIZATION COOE. 
HATH LI8~ARY lIN~ TO ERROR MESSAGE PROCESSOR. 
P<JCESS ~YST~H REOJE5T. 
L7jOal) LOAOE~ USER ;~Ll INTERFACE ROUTINE. 

Figure 1-13 - 6. Loader Map of Main Overlay (O~ 0) 

1-13-8 60435400 A. 



ENTRY POINTS. 

ENTRY ADDRESS P;{OGRAH REFERENCES 

OUTPUT; 220ft TESTA Pf(NT ft503 
TRY· 4lt26 TRY TESTA 426ft 
TRI 4436 TESTA 4270 
PRHT 4ft&1 P~'H TESTA 425& 4306 
Q8NTRY. 4541 FHSYS= TESTA 4252 
FECCHR. 4717 COHO= KODER: 6653 6740 
FECPRT. 4737 FHTAP= 5575 
FEOFAl. 4775 FlTOUT= KODER= 7035 7054 1015 
FEOEO~ •. 5017 I(ODE~: 7054 
FEOEXP •. 5021 KODER: 703& 
FEORND. 505& KODER= 7023 7051 7012 
FEOSCA. 5113 KODER= 7t1U 1046 70&& 
HOZRO. 5177 KODER= 7024 70H 7013 
FECNAP. 531& F'4TAP= KODER= &&&0 6735 &141 67&1 6776 123& 7245 
HeAP. 5324 OUTC= 73&0 
FECFHT. 5343 KODER= 6655 7201 n03 7213 7243 
FECFHU. 534& KODER= &&14 6720 
FECJP= 5ft51 OUTC= 7353 
FEClP. 5452 KODE~= 6&47 
FECRP. 5475 KODER= 6650 
FECEE. 5512 KODER: 7001 
FECV. 5560 KODER= 6624 
FECBUG. 55.61 KODER= 6575 657& 
END. 5115 FORSYS= TESTA 4311 
IOERR. 6012 OUTC= 7ft3! 
SYSERR. 6U,+ COMIO= 475& 4171 

FHTAP= 5614 
GETFIT= &5&2 
OUTe= 7440 
OVERLAY 1730 

FECOPE. 6406 OUTC=· 7335 
lINlIH. 6451 OUTC= 7417 
DBGFIT • 6476 OVERLAY 76&2 
GETFIT. &53&· GETFIT= OUTe= 7271 
KOJPT. 657& KOJER= OUTC= 72&7 
KODWRT= 7237 OUTe= 7347 
KOREP. 7244 OUTe= 1270 
OUTCI. 7271 OUTe= PRHT 4501 
FEOl. 7446 OJrCOH= KODER= 6613 665& 
FEOI. 7451 KODER: &610 6&11 
FEOXFL. 75Ua FLTour- 5121 5210 

KOD£~ 1177 11ft 6 
FEOAFH. 7524 FLTOUh sa .... 5n7 5051 505' 52ii-
FEOBLS. 7531 FlTOUT= 5000 5001 5002 501,. 5174 5115 5201 

5203 
KODER= 7030 7155 

FEOCNV. 7544 FlTOUT= 501& 
FEOIUF. 1575 FLTOUT= 5172 
OVERLAY 7623 O"~RlAY TESTA 4254 430 .. 
SQRT. lU004 SQU TRY 4431 4433 4447 "1t51 
SYSAID= 10027 SYSAID= Q8.10. ItS40 

SYS=1ST 10047 
SYS1ST. 10033 SYS=lST SQRT 10011 
SYS= 110114 SYS.RH I Q8.IO. 453& .. 546 

FORS'S= 5701 5113 5712 
ERR.R'" 11067 11106 11237 

HSG= 10143 Q8.10. 45 .... 
FORS.,S= 5726 5731 5761 51&3 5170 6267 6306 

6314 
ERR.R .. 1102 .. 110 .... lH15 
PUT.51 13262 13316 
LXER.SQ 16355 

LOADER 10162 UCLOAD OVERLH 7704 
.LBUF.SQ lOft51 LBUF.SQ LXER.S Q 163ft4 
RH.CIO 10613 CIO.RH ERR.RIt 11103 

OPEH.SQ 12275 12,.10 
OPEX.SQ 12 .. 37 
PUT.S!1 12600 13223 .13310 13330 US41 13551 U&l4 

14020 
MAR.S(1 14132 14306 
CLSF .SQ 1 .... 04 14471 
CLSV.SQ 14535 14545 1 .. 561 14!571 1460.3 
GET .Sl 15104 ·15271 ·15364 15521 15533· 
NEOX.SQ 16532 16552 

Figure 1-13-6. Loader Map of Main Overlay (0,0) (Contd) 

60435400 A 1-13-9 



Rt1.RCLA 11623 ERR.~14 11073 
PUT.Sl 13522 13657 1lt007 
WlR.SQ 1"232 
CLSF.SQ 14312 
GET.SQ 14752 15026 
BTRT .SQ 16210 

Rt1.RCLP 10630 PUT.S~ 13236 13256 
GET.St( 15245 

ERR.~t1 10734 ERJ:t.RH JHPS.~H ili .. ,.1 . 10 .... 2 10 .... 3 10 .... 4 10 .... 5 10 .... 6 10450 
·t1Et1C.~H 11610 11611 11612 
OPES.I='O 11613 
OPEN.FO 1161 .. 11615 11616 11617 11620 11621 11622 
OPEN.~H 11625 11716 11765 12031 1204U 12042 120 .. 6 

12050 12051 
OSUB.~H 121 .. 0 12141 121"2 121 .. 3 12144 121 .. 5 121 .. 6 

12147 12150, 
OPEN.SQ 12226 12230 12233 1227 .. 1233 .. 12336 12373 

12 .. 23 12 .. 2" 
OPEX.5Q 12 .. 33 
RLEQ.~H 12462 
PUT.FO 12522 1252! 1252 .. 12525 1252& 12527 12530 
PUT.SQ 12531 12536 12512 12'613 12616 1262.3 1267Z 

1213 .. 12110 13017 13225 1325,. 13255 13275 
tlt015 14023 

CLSF.FO 1"310 1 .. 311 1 .. 312 1"313 1431't 1 .. 315 1"316 
CLSF.!{H 14321 14332 lit 340 
CLSF.SQ 14350 Iltlt27 1 .... 72 
CLSV.I='O 14473 l .. lt74 14475 14476 1 .... 77 14500 1"501 
GET.FO 1 .. 625 1"626 1 .. 627 14630 14631 14632 1 .. 633 
GET.SQ 14652 14656 1 .. 673 14700 1 .. 705 15405 15527 

15562 1~605 
LXER.SQ 16371 
WEOX.SQ 16454 16464 16&.67 16500 
SKFL.F'O 16610 16611 16612 16613 1&&1 .. 16615 16616 
SI(Fl.SQ 16621 16624 16627 

!tOIlE.RI'! 11262 HO\lE.R~ pur.SQ 13111 
FSU.Sl 16061 

CHWR.SQ 11346 CHlfR.SQ OPEN.SQ 12162 
PUT.Sl 13026 

HeT.RH 11362 H:;T.~H OPEN.~H 116ft6 116;0 11752 11754 12022 12026 
CLSF.~H 14324 

OPEN.RH 11623 Qi»EN.RH FORSYS= 6 .... 7 
OSUB.RH 12051 OSJB.RH OPEN.~H 11766 
OPEN.SQ 12152 QPEN.SQ FORSYS= 64ft7 
opxx.sa 12267 OPEx.sa 12,.45 
OPEX.SQ 12 .. 32 Q?EX.SQ OPEN .C;Q 12266 
RLEQ.RH 12 .. 51 RL,EQ.~H PUT .SQ 1264 .. t27?6 

WAR.SQ 14031 
PUT .SQ 12532 . P:JT.SQ FORSYS= &331 

OUTC= 7 .. 23 
Wl~.SQ tit 0 3 0 W~~.SQ PUT.SQ 12622 

WEOX.SQ 16 .. 77 
CLSF.Rt1 14317 CLSF.R'f FORSYS= 6101 6140 

OUTe= 1327 
RSPT.SQ 1 .... 30 CLSF.SQ OPEN.SQ 123ft5 

DPEX.sa 1243,. 
CLSV.SQ 14521 14&15 
GET.SQ 15027 15513 

CLSV.SQ 1 .. S0!t CLS V-. SQ PUT.SQ 13300 13532 

Sl(c;r.SQ 
GET.S(l 15&22 

14722 GET .SQ SKFL.SQ 1&&45 t6653 
GXIT.SQ 15030 z.sa 1573D 15765 15777 

FSU.SQ 1603& 16052 16075 16077 
GRT J. sa 15111 FSU.S1 16037 16102 
ANBl.sa 15150 BTRT .SQ 1&122 16140 16145 16223 
AHAC.SQ 1515 .. FSU.S'l 160&'D 16102 16107 

BTRT .SQ 1611D 16123 1611+7 16150 16157 1&160 16161 
16161 16175 16200 16206 

:>XIT.SQ 1565,. SKFL .5Q 16635 
GET.Z 15701 Z.SQ FDRSYS= 607 .. 
RHUO.SQ 16021 FSU.SQ GET .sa 150?2 
~I1U2.SQ 16041 GET.Sl 15016 
PUT.e 16110 BTH.S1 Q9.IO. 4514 
LAB1.SQ 16231 LI(ER.S1 QS .10. 451" 
WEDS.SQ 1& .. 51 WEJX.SQ· O~ERL~Y 7672 
SKFL.SQ 16611 SI(,::L.SQ FORSYS= &07 .. 

Figure 1-13-6. Loader Map of Main Overlay (0, 0) (Contd) 

1-13-10 60435400 A 



LOAO HAP - TESTA 
OVERLAY(JVLA,l,O) 

-------- OVERLAY(OYLA,l,O) 

FWA OF HE LOAD 17033 
LWA+l OF THE LOAD 17103 

TRANSFER ADDRESS -- OVL10 1703& 

ENTRY POINT'S. 

ENTRY 

OUT'PUT: 
Q6NTU. 
END. 
OUTCI. 

ADDRESS 

2204 
4541 
5715 
7271 

P~OG~AH 

TESTA 
FO~SYS= 

OUTe= 

CYBE~ LOADER 1.0-U401 75/05/22. 12.53.5~. PAGE 

~EFE~ENCES 

OYL10 17052 17056 11062 HObS 17072 
OV110 1703& 
OVL10 17051 
OVLI0 17040 17042 17044 17040 17050 

Figure 1-13-7., Loader Map of Primary Overlay (1,0) 

1.0000000 2. 00000 DO 3.000!lOOO 4.0000000 5.0000000 &.0000000 7.0000000 
6.000001l0 9. 00000 00 10.0000000 !DO. 0 {] 00000 200.00aoooo 300.0000000 400.0000000 

50 0.0000000 600.0000000 700.0000000 800.0000000 900~0000000 1000.0000000 101.0000000 
2.1000000 3.1000000 202.0000000 2.2000000 3.2000000 303.0000000 2.3000000 

3.30000 DO 
0117.2000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

2.0000000 4.0000000 6. DO 00 0 00 6.JnnoOOo 10.0000000 12.0000000 14.0000000 
16.0000000 16.0000000 20.0000000 2. S 284271 4.0000000 4.898979> 5.6!:168542 

6.3245553 6.9282032 7.4833148 8.(JOOOOOO 8.4652814 8.9442719 101.0000000 
2.1000000 3.1000000 202.0nooooo 2.2000000 3.2000000 303.0000001) 2.3000000 

3.3000000 
795.7496875 0.0000000 0.001)001)0 0.0000000 0.0000000 0.0000000 

1.0000000 2.00000 DO 1.0000000 4.0000000 5.0000000 6.0000000 7.0000000 
8.0000000 9.0000000 10.0000000 100.0000000 200.0000000 300.00001)1)0 400.0000000 

50 0.0000000 600.0000000 70 0.00 Oil DOD 800. iJ 000000 qOO.OOOOOOO 1000.0000000 101.0000000 
2.1000000 3.1000000 202.0000000 2.~000OOO 3.2000000 303.0000000 2.3000000 

3.3000000 
&177.2000000 0.0000000 0.00 Of] DOD 0.0000000 0.0000000 0.0000000 

2.0000000 4.00 Qoo 00 5.0000000 6.:1000000 10.0000000 12.0000000 14.0000000 
16.0000000 18.0000000 20.0000000 2.5281t271 1t.0000000 4.8989795 5.1:):;68542 

&.3245553 6.9282032 7.4831148 R.OOOOOOO 8.4852614 8.9442719 1'll.0000000 
2.1000000 3.1000000 202.0000000 2.2000000 3.2000000 303.0000000 2.3000000 

3.3000000 j 

795.7493875 0.0000000 0.0000000 0.!)000000 0.0000000 0.0000000 

Figure 1-13- 8. Program Output 

60435400 A 1-13-11 



~XCHANGE PAC(AGE. 
P ~ AO 2204 BO 0 (AD) 1725 2420 25!4 DODD DODD 
RA 152500 U 1 Bl 1 (Ai) 0516 0420 0000 0000 0000 
FL 17200 A2 6530 82 771755 (A2) 1717 0631 4631 4640 3615 
E'1 7 A3 6531 B3 21t50 (A3) 2000 0000 DOG 0 DODO 0012 
~AX 0 A4 5670 B4 24 (A1t) 5555 5555 55~5 5733 3637 
Fi.X 0 A5 5674 B5 '10444 (5) 2000 DODO DOD 0 0003 1561 
~A 1400 A6 1 86 6102 (A6) 0516 0420 0000 DODO 0000 

.7 2236 a7 30 (A1) DODO DODO DOD 0 DODD DODD 

XO DODD DODD 10110 DODO 0000 
Xi DODD 0000 DODO ooua ODD II 
1(2 1117 0631 4631 461t0 3615 
X3 2000 0000 0000 0000 0012 
X,. 2000 DODO 0000 0000 000 II 
K5 0000 0000 DODO 0000 01103 
K6 0516 0420 0000 0000 0000 
)(7 2000 0000 0000 0000 01101 

(RA) 0000 0000 0000 0000 0000 
CRA+U 0516 01t20 00011 0000 000 a 

DUMP FRO'H 10054 TO 10154 
10054 62577 77676 66622 531t5~ 06600 10056 54355 55431 03410 10057 56330 56,.31 03610 10060 56330 57431 
10050 10633 5531t1 22'104 55431 7&16& 51600 10103 ;5761 10633 74260 22704 55671 21111 55761 55011 46000 
100&4 ,01000 obooo 61000 46000 ,51300 10076 61100 00001 43002 55231 26050 53735 21322 55121 63635 551t11 
10070 21322 53040 04000 10030 00000 00000 00000 00000 00000 00000 00000 00000 00000 000 DO 00000 00000 
10074 00000 00000 00000 00000 ooboo 00000 00000 a DODO 00000 00000 00000 00000 11160 61116 11240 50000 
10100 55012 20725 15051 6245; 11160 4050f) 11161 12405 ODOOO 00000 00000 00000 00000 o a a 00 00000 00000 
1010 .. 00000' 00000 00000 0 DODO 000 00 00000 00000 , 0000 00000 00000 00000 00000 00000 00000 00000 10074 
10110 00000 00000 00000 a DODO 000 DO 00000 00000 00000 04000 10125 00000 00000 01300 ODD 00 00000 a DOD 0 
10114 04000 05131t 00000 0 DODO 51100 00001 03110 1'0115 54610 04000 10113 1t6000 51100 00066 03310 10121 
10120 51100 10112 04000 10122 7UOO 00130 20160 !t 6000 13661 13161 13661 1t6000 51600 10113 10611 46000 
10124 51100 00001 01000 10112 20652 01000 10111t 1t6000 51100 00001 03110 10126 04001t 10127 61000 46000 
10130 51100 00001 03110 10127 71~02 20314 01t000 10125 20150 36661 010011 10114 01t001t 10133 61000 1t6000 
10134 71602 20314 20652 36662 53160 20173 03310 10133 OJ010 10133 51100 00001 03110 10135 11100 00001 
101ltO 04000 10132 61000 46000 71603 2461& 12&&1 ~ 0651 01000 10114 61000 46000 04000 05732 00000 00000 
10 lit It ~g:~~ ~~~:~ ~~~~~ ~~~~: 03260 10141 71600 00301 20645 13116 01t000 101ltl 01000 10133 61000 46000 
10150 53120 11161 71&00 3U17 03270 10153 llt177 27606 12717 20652 53720 12662 
10151t 73220 01000 10114 46000 04001t 10155 61000 :.6000 53120 20113 03310 10150 03110 10147 52120 00001 

Figur~ 1-13-9 .. Exchange Package Dump 

DUMP FR.OH a TO 10000 
0 ~OOO. 00000 00000 00000 051&0 42000 00000 00000 11162 02524 00000 00143 11252 42025 24000 ,0220" 
It 00000 10ODO 00000 00000 '00000 00000 08000 3 DODO 00000 00000 00000 00000 00000 000 DO 00000 00000. 

OUPLICATEO LINES. 
51t 56110 13110 00054 54710 51100 00001 03110 00055 64550 02550 00000 46000 00000 00000 00000 00800 
60 15051 52000 00000 00061 000011 17200 ODaOO ~~~~i8 00000 00000 00000 00000 00000 00000 00000 00000 
61t 17261 ItOl00 00000 00000 /t0000 00000 00000 40242 00000 01000 11032 40000 00000 40000 OOOOD 
70 17261 40157 55000 00000 00000 00000 011000 !I 0000 a 00000 ODDDO' 00000 00000 00000 ODD 00 00000 00080 
71t 00000 00000 00000 110000 00000 00001) 00000 a DODO _ 00000 00000 00000 00000 00000 DOD 00 00000 00000 

100 00000 OOOOt 71030 04252/AAA(A)17211t 00000 1)0000 00000 < 11224 00000 00000 00000 17226 000 00 00000 00000 
101t 1723 .. DaOOO 00000 0 DODO 11235 00000 01000 00000 ~ 11236 00000 00000 OOOtlO 11231 o DO DO 00000 00000 
110 1724 .. 00000 00000 00000 112410 100000 00000 OOOOOu 112105 00000 011000 00000 (B) 1721!> 52023 63147 7 .. 736 
114 17221t 00000 00000, 00000 17221t 71421 60500 :."It11 0 17225 52023 &3141 74736 17226 24613 01655 51333 
120 17226 73311 27205 41145 17227 3&735 20426 It 0772 S 11234 00000 00000 ~OOOO 1723 .. 11416 66315 75541 
124 17234 36156 74611 31646 (C) 17226 00000 00000 00000 L17214 14631 46314 63146 1121& 14631 46314 6311t6 
130 17276 24000 00000 00000 17214 31463 llt631 106315 17216 31463 14631 46315 11304 57000 00000 00000 
nit 1721 .. 46314 63146 31463 1721& 1t&314 631 .. 6 31 .. 63 17226 00000 00000 00000 1723& 00000 00000 00000 
litO 1724,.'40000 0000000000 172"6 00000 00000 00000 ,1721t7 .. DODO 00000 OOODO 11162 02524 00000 00000 
lit It 00000 08000 00000 00166 00000 00042 GOOOO 00000 00000 00000 20010 00010 00000 DO 0 DO 0'0000' 00000 
150 00000 00002 00000 00203 00000 00000 01400 00000 00000 OOODO 00000 000110 00000 00000 00000 00000 
154 00000 00000 00000 00000 a 00 DO 00000 00000 DOOOO 00000 00000 000011 OOODO 00000 00000 00000 00000 

OUPLICATEO LINfS. 
220,. 17252 42025 24000 00000 000 DO 14700 40630 02227 00800 0001t2 S0010 00000 00000 00000 20010 00000 
2210 00000 110000 00000 06103 00000 00003 00000 !I 2 lit It 00000 22600 03400 01t521 00000 00000 00000 00000 
2214 00000 00000 00000 00000 000 DO 00000 00 DOD 00000 00000 00002 00000 000110 00000 00002 00000 00000 
2220 00000 10000 00000 00000 00300 00000 00000 o 2241t 00000 00000 00000 00000 00000 00000 00000 02241t 
2224 00000' 00000 011002 24400 00000 00000 00 DOD 00000 00000 00000 00000 00000 17252 42025 24000 00131 
2230 04111 46000 00040 0221t4 00000 110000 00000 022"4 00000 00000 00000 02244 37260 ODD 00 01000 0"245 
223" OOO~O 00000 00000 00000 00000 02237 00000 00000 00000 00000 000011 00000 00000 o DO DO 00000 00001 
?240 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 
224ft 55555 55555 55555 55534 51333 33333 33333 35555 55555 55555 55355 73333 33333 33333 ,5555 55555 
2250 55555 53657 33333 33333 33335 55555 55555 55555 37573 33333 33333 33355 55555 55555 55554 05733 
?251t 33333 3333-" 33555 55555 55555 55541 57333 33333 33333 35559 55555 55555 55425 73333 33333 33333 
22&0 00000 00000 00000 00000 5555; 55555 55555 )5543 51333 33333 33333 35555 55555 55555 55445 13333 
2264 33333 33333 55555 55555 55553 ,43357 33333 33333 33335 55555 55555 53433 33573 33333 33333 33355 
2270 55555 55555 35333 35133 33313 33333 33555 ;5;55 55553 63333 51333 33333 33333 35555 55555 55537 
2274 33335 73333 33333 33333 DOD 00 00000 00000 00000 55555 55555 55554 03333 57333 33333 33333 35555 
,2300 55555 55541 33335 73333 33333 33333 55555 ;5555 55423 33357 33333 33333 33335 55555 55555'54333 
2301t 33573 33333 33333 33355 5555; 55555 44333 35733 33333 33333 33555 55555 55343 33333 51333 33333 
2318 33333 35555 55555 55534 3331t5 73333 33333 33333 00000 00000 00000 00000 55555 55555 55555 55535 
?314 573lt3 33113 3U33 15555 55555 ~5555 553.6~ ~_~'!.!! 33333 33333 5555~ 55555 55353 33551 33333 33333 
2320 3:fn,- ;lSSrJ55srs 5555- 35573 53333 33333 33355 55555 T5555 , 55553- 65735 33333 15333 33555 55555 
2324 55551 un6 57313 33333 33333 35~55 55555 55555 55355 73633 33333 33333 0110110 1001111 IIDOOO 00000 
2330 55555 55555 55555 55555 55553 65736 33333 33333 33000 00000 00000 00000 55555 55555 55413 44242 
2334 57353 33333 33333 35555 55555 55555 55335 73333 33333 33333 55555 55555 55555 53357 33333 33333 
231t0 33335 55555 55555 5555; 33573 33333 33333 33355 55555 55555 55553 35733 33333 33333 33555 55555 
2341t 55555 55533 51333 33333 33333 30000 00000 00000 55555 55555 55555 55535 57333 33333 33333 35555 
2350 55555 55555 ~375 13333 33333 33333 55555 55555 55555 51t157 33333 33333 33335 ~5555 55555 55555 
23;10 43573 33333 33333 33355 5555; 55555 55343 35733 33333 33333 33555 55555 5555; 53435 57333 33333 

Figure 1-13-10 .• Central Memory Dump 

1-13-12 60435400 A 



· 2350 33333 35555 55555 55555 34315 73333 33333 33333 00000 011000 000 00 00000 555!)5 55555 55555 53'+41 
2354 57333 13333 33333 35555 5555~ 55555 34435 73333 33333 33333 55555 55555· 55553 53357 33333 ,33333 
2310 33335 55555 55555 55555 35511+ 3351+3 J1351t ~31+55 55555 55555 55553 75733 33333 33333 33555 55555 
2311t 55553 55537 57/.t34 1t431t,. 4241t:. 05555 55555 55555 551t05 741"0 1>1434 03735 00000 00000 00000 00000 
2400 5555~ 55355 55555 55541 57353 53740 40403 :'5555 55555 55555 55415 14435 43353 33&35 55555 55555 
2404 55555 54257 37433 &3&34 311t35 55555 '55555 55555 43513 33333 33333 33355 55555 55555 '55554 35737 
2410 43403 54334 37555 55555 55555 55543 51443 73735 42344 45555 55555 ,5534' 33345 73333 33333 33333 
2411t 00000 00000 0000000000 55555 55555 55555 55535 57343 33333 33333 35555 55555 55555 55365 13~33 
2420 33333 33333 55555 55555 ;)5353 33557 33333 33333 33335 55555 55555 55555 35513 5l3~3 33333 33355 
2421t 55555 55555 55553 &5735 33333 33333 33555 Hi555 55553 6333& 51333 33333 33333 35555 ,55555 55555 
Z438 5535;) 73533 33333 33331 ODD 0(1 00000 00000 00000 55555 ~5555 55555 55555 55553 &5136 33333 33333 
243,. llOOO 00000 00000 00000 55555 55555 55551+ ~441t0 S1423 74443 4342 .. 05555 55555 55555 55335 73333 

, ilt4D 33333 33333 55555 55555 55553 53357 33333 33333 33335 55555 55555 55555 33573 33333 33333 33355 
2 ...... 55555 55555 55553 35733 33333 33333 3355!) ,5555 55555 55533 57333 33333 U3U 31000 00000 00000 
t.':tll Oil!! 00 900 00 0000 (I a OJlJEl. 00001) 00000 OORRR ~R4 00000 001to OOOOG~DO" onno 00000 Q~OO~ 00000 

DUPLICATED LINES. 
42 .... 00000 00000 00000 011000 OOODO 22600 011000 14521 oaooo 22600 00000 alt521 17117 71717 77111 &6161 
4258 ~4052 32401 55550 0 .. 252 00000 00000 00000 00000 51100 04245 01000 04541 51100 0 .. 312 4&000 4&000 
.. 25ft 01000 07&23 001&0 o 1t250 51100 01t316 1+5000 46000 01000 04467 00170 'Olt250 71700 00001 51700 04332 
42GO 51500 04332 52450 00100 72750 00100- 40644 't6000 51700 04320 51700 04321 54640 51100 04320 4&000 
426,. 01000 0~426 00220 04250 51300 04332 72150 00100 52&50 00100 51700 043Z0 51700 04321, 51100 0"320 
4270 01000 04436 00230 0 .. 250 51500 04332 72150 00001 72077' 7116 .. 52650 00112 54750 03300 04260 1t6aOO 
4274 71100 00001 51700 04333 51500 04333 61600 80005 3&055 &3750 62500 00100 51570 00180 5& .. 50 300 .. 5 
1.300 &1550 00002 24700 4&000 51770 00135 61170 00001 06670 04217 1&710 4&000 51700 04333 51100 0 .. 323 
4304 01000 07&23 002&0 04250 51100 04316 .. &000 lt6000 01000 04467 00210 0 .. 250 51500 0 .. n3 51100 0"250 
4310 27005 2 .. 700 51100 00125 01t0 DO 05715 46000 4&000 00000 00000 00000 04416 00000 00000 00000 0 .. 327 
1>311t 00000 00000 00000 04330 000 00 OOOPO 011000 GOOOO 00000 00000 00000 04331 00000 00000 00000 00000 
4320 00000 00000 00000 00112 00000 00000 00000 00112 '00000 00000 00000 00000 OOOO~ 00000 00000 04420, 
4321t 00000 00000 90000 04321 DOD 00 00000 00000 04330 00000 00000 00000 00000 00000 00000 O~OOO 00001 
4330 00000 00000 00000 00000 000 00 00000 00000 00000 100000 00000 00000 000131 00000 00000 00000 0000& 
4334 00000 00000 00000 00173 o DO DO 00000 00000 00173 00000 00000 00000 00173 '00000 oaooo 00000 00173 

DUPLICAT~O LINE~. 
t.414 DOOoD 00000 ODOOO 00173 000 DO 00000 00000 00173 172&1 40155 55555 55555 00000 00000 00000 00000 
"420 172&1 .. 0155 55555 55555 o DO DO 00000 00000 00000 24223 15555 55550 04426 00000 00000 00000 17200 
4424 51400 04456 10644 46000 51300 04423 52030 00000 04000 04271 00000 00000 74600 5 .. 010 51600 04~2:S 

4430 4&000 4&000 4&000 46000 545 DO 53150 01000 10004 50500 00001 53150 46000 51&00 04454 01000 10004 
4434 ;1500 04454 30056 24100 51100 04456 OltOOO 0442 .. 04000 04271 00000 00000 512IJO 04 .... 1 10&22 4&000 
4440 51500 04430 04000 0 .... 27 04000 04442 61000 46'000 51100 041t55 51200 04436 10&11 22102 51&'00 04430 
1>41t1t 51700 04426 61000 46000 54; 00 50400 00001 53150 53340 311)31 24100 4&000 03270 04 .. 31 01000 10004 
4450 50500 00001 53150 46000 51&00 04454 01000 1000 .. 51500 04454 3105& ,2 .. 10tl 51700 04456 04000 04424 
4454 17224 36156 74&71 3154& ,.&000 4&000 i+&000 lt6000 17234 3615& 74671 31646 00000 000 00 OOO~O 00000 
4450 00000 00000 00000 00000 00000 001100 00000 iJ 0000 00000 00000 00000'00000 00000 00000 00000 00000 
4454 20221 62455 55550 04451 000 00 00000 00000 11200 51300 0 .. 4&5 52030 00000 04000 04307 00000 00000 
4410 14500 54010 51600 04465 43100 71&00 00081 1t&000 51700 Olt512 51&00 04513 51500 04513 &1&00 00035 
1>474 &.3.1SD4(1)00 4&000 4&000 SHOO 04512 51470 00100 &1170 00001 30045 24100 547S0 116&70 04 .. 15 7&11 0 
1>500 51700 04513 51100 U4503 01000 01271 DO 100 0"4&4 0 .. 000 04466 4&000 4&000 00000 00000 00000 02204 
"'501t 00000 00000 00000 04510 OOO~O 00000 01000 Ort512 00030 00000 05000 0 .. 451 00000 00000 00000 00000 
4S10 55401+ 05555 55000 00000 51343 0410& JIt .. 25 74252 17316 15677 1&120 00744 00000 00000 00000 0003&, 
4514 00000 00000 00000 04245 DOD 00 00000 DODD 0 00000 03172 03122 11071 02'+55 00000 000 00 00000 00000 
1.)520 00000 00000 00000 00000 5555~ 55555 55551t 24440 51423 744 .. 3 4342'+ 05555 55555 55555 55,335 7;5333 
4521t 13333 33333 55555 55555 55555 5U57 33333 33333 33335 55555 55555 55555 33513 33333 33333 33355 
4530 5555~ 55555 55S53 35133 33333 33333 33555 55555 55555 55533 57333 ,33333 33333 33333 33333 33333 
!.t 531t 55355 73633 33333 33333 20&5~ 12&&1 43101 20151 12661 01000 10114 1t&000 51200 014-531 10722'1t&000 
4~l,.O 00000 00000 00900 0450& 00000 011000 14410 0431& 001100 00000 0'0000 02204 00000 DOD DO 00000,04504 
454ft. 00000 00000 00000 00000 DOOM DO 000 00 l!00 00000 00000 001100 000000 0006 77177 17717 11177 77776 
4550 00000 00000 00000 001100 a DO 00 00000 00000 11 0001 00000 00000 00000 00000 00000'00000 00000 00001 
455,. 00000000000000000004 000 no 00000 OIJOOO IJ 0000 00000 00000 ,00000' 0022& 20060 OpOOO coo DO 08021 
45&0 11701 54335 06020 0457& B200 0462& 11403 37623 00000 00000 00000 00002 00000 OOOOD DUOD ODooa 
4561t 20120 OU001 01000 04512 00000 00000 00000 00000 00000 00000 00000 04521 0 .. 000 01244 61000 4&lltlO, 
4570 OOOOD 00000 00000 00057 51&00 04627 6&710 ;4300 01000 04640 61000 4&000 51500 04627 61500 rlOOOl 
4574 20120 00000 00000 04511 ~30 52 04000 01t&23 t6000 61225 03310 04&23 53210 03120 046DD 53710 ~lOooa 
1t&00 10255 52510 00005 46000 71& 00 00001 45173 20535 15&61 1177r;. 3&661 20637 54&50 52510 oooal) :.roDOO 
4604 11500 0000& 43771 '2054& 15&&7 11715 3&6&7 ZO&26 54&50 52510 00002 461100 71600 OG002 43772 20532 
4&10 15&&7 11775 36&&7 20&42 54&50 52510 00002 .. 6000 71500 00002 43712 2053& 15&61 11775 36667 20&3& 
~511t 54650 52510 0000& 43752 15lt57 '52510 00006 +3744 21541t 15657 6,1500 DODD! 03140 04621 71&00 0022& 
4&20 71400 01t521 61000 46000 20544 1216" S~710,10611 22502 546'40 54115 54,.,.5 03210 0,.560 01020 0 .. 560 
It &2,. 03350 04532 14155 .. 6000 04000 04532 61000 .6000 20140 00000 00000 000112 00000 00000 00000 00000 
"630 22227 3&727 20603 15213 20701 12&61 3&771~352S ZOS06 15150 &3410 222 .... 13113 11505 03320 04630 
4&34 66357 04400 0 .. 637 &6322 03150 04640 04430 04637 675'+5 05520 0'+640 6&300 43 .. 00 04300 0 .. 6 .. 0 10677 
4640 00000 00000 &1000 46000 7iltOO 07714 430&5 76500 6&211 13777 &1307 71744 20425 6.6500 11300 00001 
4&1t1t OltOOO 04632 &1000 46000 00000 00000 00000,00000 00000 00000 00000 00000 00000 00000 00000 00000 
46;0 55S5~ 55~$5 55555 5~553 17711 77771 77777 77771 17717 11771 17777 17100 77177 71777 77777 10000 
It &54 77777 77777 71710 OO~OO 77771 77777 11000 DOO~n 17171 71177 DanDo 00000 17777 777 00 00000 01t000 
4650 11777 70000 00000 00000 77770 00000 00000 lOOOO 77000 000,00 000 DO 00000 00000 00000 00000 00000 
't6g,. 1720lt 00000 00000000011 11235 00000 00000 00000 112&& 20000 00000 OOODO 17317 64000 '00000 '00000 
4610 11354 70'+00 00000 00000 17405 06500 00000 00000 17431 50220 00000 00000 17414 &1132 00000 00000 
1.67'+ 11525 753&0 40000 OUOOO 11551 3465'+ 50000 00000 17&1It 52013 71000 oouao 176 .. 5 64416 67200 00000 
4700 17677 21522 45040 00000 17734 43023 .. 7124 00000 17765 53630 "0751 00010 2:0027 06576 511 .. 3 20000 
.!,7~,~· ~.06" 3"157 '~57 G a'UDIl 20115 4J2~2 7'135 ~2400 201,.& 74955 531&,. 73110 ' '20204 2543~ 43011 0 .. 150 

Figu'r:e 1-13-10 •. Central Memory Dump (Contd) 

60435400 A 1-13-13 





SYSTEM UTILITY CONTROL STATEMENTS 14 

NOS provides the following utilities for file maintenance. 

EDIT 

MODIFY 

OPLEDIT 

UPDATE 

UPMOD 

KRONREF 

EDIT STATEMENT 

Performs data manipulations on a specified mass storage file 

Edits a Modify-formatted program library file 

Removes modification decks and identifiers from a Modify-for­
matted program library file 

Edits an Update-formatted program library file 

Converts an Update-formatted program library file to a Modify­
formatted program library file 

Generates a cross-reference listing of system symbols 

The EDIT control statement calls the Text Editor utility. The Text Editor enables a 
user to manipulate data on a specified mass storage file through use of special input 
directives called edit commands. For a detailed description of the Text Editor and 
an explanation of these commands~ refer to the Text Editor Reference Manual. 

The control statement format is: 

or 

m 

60435400 B 

Name of file to be edited (referred to as edit file). This specifi­
cation is required for batch origin jobs. 

Mode of file processing: 

ASCII or AS ASCII mode edit file 

NORMAL or N NORMAL mode edit file 

File from which directives (edit commands) are to be read. 
If omitted, INPUT is assumed. 

File to which output is to be written. If omitted~ OUTPUT is 
assumed. 

1-14-1 



MODIFY STATEMENT 

The MODIFY control statement edits a Modify-formatted program library file. 

The control statement format is: 

MODIFY(P1' P2' ... , Pn ) 

Pi Any of the following in any order: 

1-14-2 

I Use directive input from file INPUT. If the 
I option is omitted, file INPUT is assumed. 

I=lfn1 

1=0 

P 

P=lfn2 
P=O 

C 

C=lfn3 

C=O 

N 

N=lfn4 
N=O 

S 

S=lfn5 

S=O 

L 

L=lfn6 
L=O 

LO 

LO=chars 

Use directive input from file lfnt. 

Use no directive input. 

Use file OPL for the old program library. 
If the P option is omitted, file OPL is 
assumed. 

Use file lfn2 for the old program library. 

Use no old program library 

Write compile output to file COMPILE. If 
the C option is omitted, file COMPILE is 
assumed. 

Write compile output to file lfn3' 

Write no compile output. 

Write new program library on file NPL. 

Write new program on file lfn4' 

Write no new program library. If this option 
is omitted, N= 0 is assumed. 

Write source output on file SOURCE. 

Write source output on file lfn5. 

Write no source output. If this option is 
omitted, S=O is assumed. 

List output on file OUTPUT. If the L option 
is omitted, file OUTPUT is assumed. 

List output on file lfn6' 

List no output. 

Select list options: ECTMWDS 

Select up to seven list options which can 
be any of the following. 

E Errors 
C Directives other than INSERT, 

DELETE, RESTORE 
T Input text 
M Modifications made 
W Compile file directives 
D Deck status 
S Statistics 
I Inactive statements 
A Active statements 

60435400 B 



60435400 B 

A 

D 

F 

U 

NR 
x 

X=prog 

Write compressed compile file. 

Ignore errors. 

Modify all decks. 

Modify only decks mentioned on DECK 
directives; F overrides the U option. 

Do not rewind the compile file. 

Rewind input and output files.. set A option .. 
and call the COMPASS assembler when 
modification is complete. 

Rewind input and output files.. set A option .. 
and call the processing program prog when 
modification is complete. 

X=O Do not call another processing program. If 
this option is omitted .. X=O is assumed. 

Q 

Q=prog 

Q=O 

z 

CV=63 

CV=64 

Rewind the output file.. set A option.. and call 
the COMPASS assembler when modification 
is complete. 

Rewind the output file .. set A option .. and 
call the prog assembler when modification 
is complete. 

Do not call another processing program. If 
this option is omitted .. Q=O is assumed. 

If this parameter is present. the MODIFY 
control card contains the input directives 
following the terminator. When this param­
eter is specified.. the I parameter is ignored. 

I NOTE I 
Do not place another terminator 
after the directives. 

Convert 64-character set OPL to 63-char­
acter set OPL. 

Convert 63-character set OPL to 64-char­
acter set OPL. 

1-14-3 



The following parameters can be entered only if the X or. 
Q options is selected. 

CB 

CB=lfn7 

CB=O 

CL 

CL=lfn8 

CL=O 

CS 

CS=lfng 

CS=O 

CG 

CG=lfn10 
CG=O 

Set assembler argument B=LGO. If the CB. 
option is ami tted, B=LGO is assumed. 

Set assembler argument B=lfn7. 

Set assembler argument B=O. 

Set assembler argument L=OUTPUT. 

Set assembler argument L=lfn8. 

Set assembler argument L=O. If this option 
is omitted, L=O is assumed. 

Set assembler argument S=SYSTEXT. If the 
CS option is omitted, S=SYSTEXT is assumed. 

Set assembler argument S=lfng. t 
Set assembler argument S=O. 

Set assembler argument G=SYSTEXT. 

Set assembler argument G=lfn10• t t 
Set assembler argument G=O. If this option 
is omitted, CG is defined by the CS option. 

For a more detailed description of Modify, refer to the Modify Reference Manual. 

OPLEDIT STATEM-ENT 

The OPLEDIT control statement removes modification decks and identifiers from a Modify­
formatted program library file. 

The control statement format is: 

Any of the following in any order: 

I Use directive input from file INPUT. If the 
I option is omitted, file INPUT is assumed. 

I=lfnl 

1=0 

P 

P=lfn2 

P=O 

N 

N=lfn3 

N=O 

t The desired file is retrieved from the 
tt The desired file is a local file. 

1-14-4 

Use directive input from file lfnl. 

Use no directive input. 

Use file OPL for the old program library. 
If the P option is omitted, file OPL is 
assumed. 

Use file lfn2 for the old program library. 

Use no old program library. 

Write new program library on file NPL. 

Write new program library on file lfn3. 

Write no new program library. If this option 
is omitted, N=O is assumed. 

system. 

60435400 B 



L 

L=lfn4 

L=O 

M=lfnS 

LO::zx 

F 

D 

U 

U=O 

List output on file OUTPUT. If the L option 
is omitted~ file OUTPUT is assumed. 

List output on file lfn 4. 

List no output. 

Write output from ,:cpU LLMOD directives on 
file lfnS. If this option is omitted. M=MODSETS 
is assumed. 

Set list options x; each bit in x. if set, 
turns on the corresponding option. 

001 Errors 

002 Directives 

004 All other input statements 

010 Modifications made 

020 Directives processed from the 
program library 

040 Deck status 

100 Directory lists 

200 Inactive statements 

400 Active statements 

If this option is omitted. x=177 is assumed 
(that is. the first seven options listed). 

Modify all decks. 

Debug; ignore errors. 

Generate ':'EDIT directives for all decks. 

Generate no ':'EDIT directives. 
If the U option is omitted, generate ':cEDIT 
directives for common decks. 

For a complete description of the OPLEDIT utility. refer to the MODIFY Reference 
Manual. 

60435400 B 1-14-5 



UPDATE STATEMENT 
The UPDATE control statement edits an Update-formatted program library file. 

The control statement format is: 

Pi 

1-14-6 

Any of the following in any order: 

A Sequential-to-random program library copy 

B 

C 

C=lfn1 
C=O 

D 

E 

F 

I 

I=lfn3 

K 

L=char 

N 

Random -to-sequential program library copy 

Write compile file output on COMPILE. If 
the C option is omitted, file COMPILE is 
assumed. 

Write compile file output on lfn1• 

Write no compile output. 

Compile output has 80 columns for data; if D 
is omitted, compile output has 72 columns 
for data. 

Update rearranges the directory to reflect the 
actual order of decks on the program library. 
If E is omitted, the old program library 
directory is not edited. 

Full update; all decks are compiled. If F is 
omitted, corrected decks and those named on 
COMPILE directives are processed. 

Output from PULLMOD directives is written 
on lfn2. Any rewind option applying to the 
source file also applies to this file. OUTPUT 
is not a valid file for this option. If G is 
omitted, pulled modifications are appended to 
the source file. 

Inpu t is on file INPU T. If the I option is 
omitted, file INPUT is assumed. 

Input comprises next record on lfn3. 

Compile output decks to be written on file 
COMPILE 'in COMPILE directive sequence. 

Compile output decks to be written on lfn4 in 
COMPILE directive sequence. If this option 
is omitted, output is determined by the C 
option. 

char is a string that specifies any of the A, 
F, and 0 through 9 list options. If this option 
is omitted, options A, 1, 2, 3, and 4 are 
selected. Any use of 0 suppresses listing. 

Merge input is on file MERGE. 

Merge input is on file lfn5• If M option is 
omitted, there is no merge file. 

New program library to be written on file 
NEWPL. 

60435400 B 



604354()O B 

N=lfn6 

o 

P 

Q 

R 

R=char 

S 

S=lfng 

T 

U 

w 

New program library to be written on file 
lfn6. If N option is omitted, no new pro­
gram library is written. 

List output to be written on OUTPUT. If 
the 0 option is omitted, OUTPUT is assumed. 

List output to be written on lfn7- If 0 
option is omitted, OUTPUT is assumed. 

Use file OLDPL for the old program library. 
If the P option is omitted, OLDPL is assumed. 

Use file lfnS for the old program library. 
If this option is omitted, OLDPL is 
assumed. 

Only decks on COMPILE directives are 
processed. If Q is omitted, corrected 
decks and those named on COMPILE 
directives are processed. 

No rewinds are issued for the program 
libraries, compile file, or source file. 

Each character in the string char indicates 
a file to be rewound before and after the 
Update run. 

C Compile 

N New program library 

P Old program library and merge 
library 

S Source and PULLMOD 

Files not specified in char are not re­
wound. If R is omitted, files are 
rewound before and after the Update run. 

Source output written on file SOURCE. 

Source output written on file lfng. If S 
is omitted, Update does not generate a 
source output file unless the source output 
is specified by T. 

Source output excluding common decks on 
file SOURCE. 

Source output excluding common decks on 
file lfn 10. If T is omitted, no source 
output unless source output is specified 
by S. 

Update execution is not terminated by 
normally fatal errors. If U· is omitted, 
Update execution terminates upon en­
countering a fatal error. 

The new program library (refer to N 
option) will be a sequential file. If W 
is omitted, the new program library will 
be a random file (unless it is a magnetic 
tape file). 

1-14-7 



X Compile file is in compressed format. If X 
is omitted, the compile file is not in com­
pressed format. 

Z The input file (refer to I option) is as sumed 
to be in peS-compressed format. This param­
eter applies to the directives input file only; 
it does not apply to files specified by READ 
directives. If Z is omitted, the input file is 
a normal .. coded file. 

8 Compile file output is composed of 80- column 
line images. If this option is omitted.. com-
pile file output is composed of 90-column line 
images. 

)~=char The master control character (first character 
of each directive) for this Update run is char 
which can be any character having a display 
code octal value in the range 01 through 54 
except for 51 and 52 (the open and close 
parentheses). If this option is omitted, the· 
master control character is )~. 

I =char The comment control character for this Update 
run is char which can be A through Z, 0 
through 9, or +-)~/$=. Note, however .. that 
the character should not be changed to one of 
the abbreviated forms of directives unless 
NOABBREV is in effect. If this option is 
omitted.. the comment control character is 
a slant bar. 

Note that the UPDATE control statement is processed in product set format. For a more 
detailed description of Update, refer to the Update Reference Manual. 

1-14-8 60435400 B 



UPMOD STATEMENT 

The UPMOD control statement converts an Update-formatted program library file to a 
Modify-formatted program library file. 

The control statement format is: 

Any of the following in any order: 

P 

N 

N=lfn2 

M 

F 

NR 

Update program library from file OLDPL. 
If the P option is omitted, file OLDPL is 
assumed. 

Update program library from file ifn1' 

Modify program library on file OPL. 

Modify program library on file lfn2' 

Modify program library name is OPL. If 
the M option is omitted, file OPL is as­
sumed. 

Modify program library name is lfn3' 

Convert to file mark. 

Do not rewind file lfn1• 

The Update file must be in sequential format. A random Update file must first be 
changed to sequential format via Update before being submitted to UPMOD for conversion. 
Unless otherwise specified, only one record from the Update file is converted. After 
the Modify OPL has been created, no references should be made to modset identifiers 
present on the Update library. The new OPL should be treated as any other program 
library created by a Modify creation run. 

60435400 B 1-14-9 



KRONREF STATEMENT 

The KRONREF control statement generates a cross-reference listing of system symbols 
used by decks on a MODIFY OPL. 

The control statement format is: 

P=lfn1 OPL input 'from file lfn1'" If the P option is omitted or 
P alone is specified l file OPL is assumed. 

List output on file lfn2.. If the L option is omitted or L 
alone- is specified l file OUTPUT is assumed. 

System text from overlay lfng. If the S option is omitted 
or S alone is specified l file SYSTEXT is assumed. 

System text from local file lfn4. If G is omitted, system 
text is acquired as specified or defaulted by the S option. 
If G alone is specified l local file TEXT is used. Use of 
the G option overrides any S specification. 

The names of programs on the OPL are listed for those decks that reference the 
following. 

• PP direct cell locations defined in lfng or lfn4 

• PP res ident entry points defined in lfn3 . 

• Monitor functions 

• Central memory pointers (in low core) defined in Hn3 or lfn4 

• Central memory locations (in low core) defined in Hn3 or lfn4 

• Control point area words defined in lfn3 or lfn4 

• Dayfile message options 

• File types and mass storage constants 

• Job origin types l queue types l and priorities 

• Error flags referenced 

• Common deck calls 

• PP packages called 

• Special entry points 

1-14-10 60435400 B 



CHARACTER SETS 

NOS TIME-SHARING 64-CHARACTER SET 

The character sets for ALGOL and COBOL are listed in their respective reference 
manuals. 

60435400 C 

ASCII CODE TERMINALt CORRESPONDENCE CODE TERMINALtt 
INTERNAL 

STANDARD PRINT APL PR INT STANDARD PRINT APL PRINT DISPLAY CODE 

CHAR. CODE CHAR. CODE CHAR. CODE CHAR. CODE (6/12-BIT OCTAL) 
(7-BIT OCTAL) (7-BIT OCTAL) (8-BIT OCTAL) (8-BIT OCTAL) 

: 072 : 276 : 153 : 121 00 ttt 
A 10 I A 341 A 171 A 171 01 

B 102 B 342 B 166 B 166 02 

C 303 C 143 C 172 C 172 03 

0 104 0 344 D 052 0 052 04 

E 305 E 145 E 112 E 112 05 

F 306 F 146 F 163 F 163 06 

G 107 G 347 G 043 G 043 07 

H 110 H 350 H 046 H 046 10 

I 311 I 151 I 031 I 031 I I 

J 312 J 152 J 103 J 103 12 

K 113 K 353 K 032 K 032 13 

L 314 L 154 L 106 L 106 14 

M 115 M 355 M 141 M 141 15 

N 116 N 356 N 122 N 122 16 

0 317 0 157 0 105 0 105 17 
p 120 P 360 P 013 P 013 20 

a 321 a 161 a 133 a 133 21 

R 322 R 162 R 051 R 051 22 

S 123 S 363 S 045 S 045 23 

T 324 T 164 T 002 T 002 24 

U 125 U 365 U 062 U 062 25 

V 126 V 366 V 061 V 061 26 

W 327 W 167 W 165 W 165 27 

X 330 X 170 X 142 X 142 30 

Y 131 Y 371 Y 147 Y 147 31 

Z 132 Z 372 Z 124 Z 124 32 

0 060 0 060 0 144 0 144 33 

I 261 I 261 I 040 I 040 34 

2 262 2 262 2 020 2 020 35 

3 063 3 063 3 160 3 160 36 

4 264 4 264 4 004 4 004 37 

5 065 5 065 5 010 5 010 40 

6 066 6 066 6 130 6 130 41 

7 267 7 267 7 150 7 150 42 

8 270 8 270 8 070 8 070 43 

9 071 9 071 9 064 9 064 44 

+ 053 + 055 + 023 + 067 45 

- 055 - 275 - 067 - 067 46 

* 252 * 120 * 070 * 013 47 

I 257 I 257 I 007 I 007 50 

( 050 ( 053 ( 064 ( 153 51 

) 251 ) 252 ) 144 ) III 52 

$ 044 $ 374 $ 004 a 171 53 

= 275 = 245 = 023 = 010 54 

t THE OCTAL CODES LISTED FOR ASCII CODE TERMINALS ARE SHOWN WITH EVEN 
PARITY (NORMAL) 

tt THE OCTAL CODES LISTED FOR CORRESPONDENCE CODE TERMINALS ARE SHOWN 

WITH ODD PARITY (NORMAL) 

ttt USE OF THE COLON IN PROGRAM AND DATA FILES WILL CAUSE PROBLEMS. THIS IS 

PARTICULARLY TRUE WHEN IT IS USED IN PRINT AND FORMAT STATEMENTS. 

~AE4A 

l-A-l 

A 

I 



ASCII CODE TERMINAL CORRESPONDENCE CODE TERMINAL 

STANDARD PRINT APL PRINT STANDARD PRINT APL PRINT 
INTERNAL 

DISPLAY CODE 
CHAR. CODE CHAR. CODE CHAR CODE CHAR CODE (6/12-BIT OCTAL) 

8-BIT OCTAL) 8-BIT OCTAL) . (7-BIT OCTAL) 7-BIT OCTAL) 
(SPACE) 240 (SPACE 240 SPACE) 100 (SPACE) 100 55 

I 254 I 254 I 073 I 073 56 
056 056 121 121 57 

# 243 .. 041 # 160 .. 040 60 
r 333 r 273 '/4 001 I: 153 61 
] 335 ] 072 '12 001 ] III 62 

0/0 245 176 0/0 010 023 63 
" 042 #: 050 .. III ~ 070 64 

- 137 t - 306 - 067 - 163 65 
! 041 V 251 ¢ 130 V 064 66 
a 246 1\ 137 a 150 1\ 144 67 
I 047 I 113 I III I 032 70 

? 077 ? 321 ? 007 ? 133 71 
< 074 < 243 NULL -- < 160 72 
> 276 > 047 NULL -- > 150 73 

(Q) 300 ~ 044 (Q) 020 S 004 74 

\ 134 \ 077 NULL -- \ 007 75 
A 336 - 042 NULL -- - 020 76 
; 273 ; 074 ; 153 ; 073 77 

I NULL -- 0 134 NULL -- NULL -- 7600 
a 341 a 101 a 171 a 171 7601 
b 342 1 102 b 166 1 166 7602 
c 143 n 303 c 172 n 172 7603 
d 344 L 104 d 052 L 052 7604 
e 145 IE 305 e 112 IE 112 7605 

. f 146 X 336 f 163 X 023 7606 

9 347 V 107 9 043 V 043 7607 
h 350 II 110 h 046 II 046 7610 
i 151 "\. 311 I 031 "\. 031 76 II 
j 152 0 312 j 103 0 103 7612 
k 353 -I 173 k 032 NULL -- 7613. 
I 154 0 314 I 106 0 106 7614 

m 355 I 115 m 141 I 141 7615 
n 356 T 116 n 122 T 122 7616 
0 157 0 317 0 105 0 105 7617 

P 360 - 100 P 013 - 001 7620 
q 161 - 140 q 133 - 101 7621 
r 162 p 322 r 051 p 051 7622 
s 363 r 123 s 045 r 045 7623 
t 164 .... 324 t 002 .... 002 7624 
u 365 ~ 125 u 062 , 062 7625 
V 366 U 126 v 061 U 061 7626 

w 167 w 327 w 165 w 165 7627 
X 170 :::> 330 x 142 :::> 142 7630 

Y 371 t 131 Y 147 t 147 7631 
3AE3A 

t ON TTY MODELS HAV ING NO UNDERLINE I THE BACKARROW (-) TAKES ITS PLACE 

l-A-2 60435400 C 



ASCII CODE TERMINAL CORRESPONDENCE CODE TERMINAL 

STANDARD PRINT APL PRINT STANDARD PRINT APL PRINT 
INTERNAL 

DISPLAY CODE 

CHAR. CODE CHAR. CODE CHAR. CODE CHAR. CODE (6/12-BIT OCTAL) 
(a-BIT OCTAL (a-BIT OCTAL) (a-BIT OCTAL) (a-BIT OCTAL) 

Z 372 c 132 Z 124 c 124 7632 
{ 173 { 335 NULL -- NULL -- 7633 
: 174 ~ 246 ± 040 ~ 130 7634 
} 175 } 175 NULL -- NULL -- 7635 

- 176 I- 133 NULL -- NULL -- 7636 
DEL 377 DEL 377 NULL -- NULL -- 7637 
NUL 000 NUL 000 NUL 075 NUL 075 7640 
SOH 201 SOH 201 SOA 166 SOA 166 7641 
STX 202 STX 202 EOA 064 EOA 064 7642 
ETX 003 ETX 003 NULL -- NULL -- 7643 
EOT 204 EOT 204 EOT 174 EOT 174 7644 
ENQ 005 ENQ 005 NULL -- NULL -- 7645 
ACK 006 ACK 006 ACK 067 NULL -- 7646 

BELL 207 BELL 207 NULL -- NULL -- 7647 
BS 210 BS 210 BS 135 BS 135 7650 
HT 011 HT 011 HT 057 HT 057 7651 
LF 012 LF 012 LF 156 LF 156 7652 
VT 213 VT 213 NULL -- NULL -- 7653 
FF 014 FF 014 NULL -- NULL -- 7654 
CR 215 CR 215 CR 155 CR 155 7655 
SO 216 SO 216 UCS 034 UCS 034 7656 
SI 017 SI 017 LCS 037 LCS 037 7657 

OLE 220 OLE 220 NULL -- NULL -- 7660 
DCI 021 DCI 021 NULL -- NULL -- 7661 
DC2 022 DC2 022 NULL -- NULL -- 7662 
DC3 023 DC3 023 NULL -- NULL -- 7663 
DC4 024 DC4 024 STO 054 STO 064 7664 
NAK 225 NAK 225 NAK 001 NAK 001 7665 
SYN 226 SYN 226 IL 075 IL 075 7666 
ETB 027 ETB 027 EOB -136 EOB 136 7667 
CAN 030 CAN 030 DEL 177 DEL 137 7670 
EM 231 EM 231 NULL -- NULL -- 7671 
SUB 232 SUB 232 NULL -- NULL -- 7672 
ESC 033 ESC 033 PF 076 PF 076 7673 
FS 234 FS 234 NULL -- NULL -- 7674 
GS 035 GS 035 NULL -- NULL -- 7675 
RS 036 RS 036 NULL -- NULL -- 7676 
US 237 US 237 NULL -- NULL -- 7677 

NULL -- NULL -- NULL -- NULL -- 7400 
@ 300 S 044 @ 020 S 004 7401 
A 336 - 042 NULL -- - 020 7402 

NULL -- NULL -- CNL 001 CNL 001 7403 
: 072 : 276 : 153 : 121 7404 I 

NULL -- NULL -- NULL -- NULL -- 7405 
NULL -- NULL -- NULL -- NULL -- 7406 

I 140 NULL -- NULL -- NULL -- 7407 I 
3AE5A 

60435400 C l-A-3 



NOS STANDARD CHARACTER SET 

l-A-4 

ASCII HOLLERITH EXTERNAL ASCII 
CDC GRAPHIC DISPLAY PUNCH BCD PUNCH 

GRAPHIC SUBSET CODE (026) CODE (029) 

= t . OOt 8-2 00 8-2 . 
A A 01 12-1 61 12-1 
B B 02 12-2 62 12-2 
C C 03 12-3 63 12-3 
D D 04 12-4 64 12-4 
E E 05 12-5 65 12-5 
F F 06 12-6 66 12-6 
G G 07 12-7 67 12-7 
H H 10 12-8 70 12-8 
I I I I 12-9 71 12-9 
J J 12 II-I 41 II-I 
K K 13 11-2 42 11-2 
L L 14 11-3 43 11-3 
M M 15 11-4 44 11-4 
N N 16 11-5 45 11-5 
0 0 17 11-6 46 11-6 

.p P 20 11-7 47 11-7 
Q Q 21 11-8 50 11-8 
R R 22 11-9 51 11-9 
S S 23 0-2 22 0-2 
T T 24 0-3 23 0-3 
U U 25 0-4 24 0-4 
V V 26 0-5 25 0-5 
W W 27 0-6 26 0-6 
X X 30 0-7 27 0-7 
Y Y 31 0-8 30 0-8 
Z Z 32 0-9 31 0-9 
0 0 33 0 12 0 
I 1 34 I 01 I 
2 2 35 2 02 2 
3 3 36 3 03 3 
4 4 37 4 04 4 
5 -S 40 5 05 5 

t TWELVE OR MORE ZERO BITS AT THE END OF A 60- BIT WORD ARE 
INTERPRETED AS END-OF-LiNE MARK RATHER THAN TWO COLONS. 

ASCII 
CODE 

3A 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
40 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
30 
31 
32 
33 
34 
35 
3AEI3A 

60435400 B 



ASCII HOLLERITH EXTERNAL ASCI I 
CDC GRAPHIC DISPLAY PUNCH BCD PUNCH ASCII 

GRAPHIC SUBSET CODE (026) CODE (029) CODE 

6 6 41 6 06 6 36 

7 7 42 7 07 7 37 
8 8 43 8 10 8 38 -
9 9 44 9 I I 9 39 

+ + 45 12 60 12- 8-6 2B 

- - 46 I I 40 I I 20 
)I • 47 11-8-4 54 11-8-4 2A 

I I 50 0-1 21 0-1 2F 
( ( 51 0-8-4 34 12-8-5 28 
) ) 52 12-8-4 74 11-8-5 29 

$ $ 53 11-8-3 53 11-8-3 24 

= = 54 8-3 13 8-6 3D 

BLANK BLANK 55 NO PUNCH 20 NO PUNCH 20 

,(COMMA) .(COMMA) 56 0-8-3 33 0-8-3 2C 

.(PERIOD) .(PERIOD) 57 12-8-3 73 12-8-3 2E 

- # 60 0-8-6 36 8-3 23 
[ [ 61 8-7 17 12-8- 2 5B 
] ] 62 0-8-2 32 II -8-2 50 

°/ot 0/0 63 8-6 16 0-8-4 25 
:¢: II (QUOTE) 64 8-4 14 8-7 22 

- - (UNDERLINE) 65 0-8-5 35 0-8-5 5F 

V I 66 11-0 52 12-8-7 21 

A a 67 0-8-7 37 12 26 

t I (APOSTROPHE) 70 11-8-5 55 8-5 27 , ? 71 11-8-6 56 0-8-7 3F 

< < 72 12-0 72 12-8-4 3C 

> > 73 11-8-7 57 0-8-6 3E 

~ ca 74 8-5 15 8-4 40 

~ \ 75 12-8-5 75 0-8-2 5C 
---. -(CIRCUMFLEX) 76 12-8-6 76- 11-8-7 5E 

; (SEMICOLON) ; (SEMI COLON) 77 12-8-7 77 11-8-6 3B 

3AE6A 

t IN INSTALLATIONS USING THE CDC 63 -GRAPHIC SET, DISPLAY CODE 00 HAS NO ASSOCIATED 
GRAPHIC OR HOLLERITH CODE; DISPLAY CODE 63 IS THE COLON (8-2 PUNCH). THE 
SELECTION OF THE 63 - OR 64- CHARACTER SET FOR TAPES IS AN I NSTALLATION OPTION. 

60435400 A l-A-5 



ASCII/DISPLAY CODE AND EBCDIC/DISPLAY CODE CONVERSION 

DISPLAY ASCII EBCDIC 
CODE UPPERCASE LOWERCASE UPPERCASE LOWERCASE 

OCTAL CHAR CHAR HEX CHAR HEX CHAR HEX CHAR HEX 

00 3A SUB IA 7A SUB 3F 
01 A A 41 a 61 A CI a 81 
02 B B 42 b 62 B C2 b 82 
03 C C 43 c 63 C C3 c 83 
04 0 0 44 d 64 0 C4 d 84 
05 E E 45 e 65 E C5 e 85 
06 F F 46 f 66 F C6 f 86 
07 G G 47 g 67 G C7 g 87 
10 H H 48 h 68 H C8 h 88 
II I I 49 i 69 I C9 i 89 
12 J J 4A j 6A J 01 j 91 
13 K K 48 k 68 K 02 k 92 
14 L L 4C I 6C L 03 I 93 
15 M M 40 m 60 M 04 m 94 
16 N N 4E n 6E N 05 n 95 
17 0 0 4F 0 6F 0 06 0 96 
20 P .p 50 P 70 P 07 P 97 
21 Q Q 51 q 71 Q 08 q 98 
22 R R 52 r 72 R 09 r 99 
23 S S 53 s 73 S E2 s A2 
24 T T 54 t 74 T E3 t A3 
25 U U 55 u 75 U E4 u A4 
26 V V 56 v 76 V E5 v A5 
27 W W 57 w 77 W E6 w A6 
30 X X 58 x 78 X E7 x A7 
31 Y Y 59 Y 79 y E8 Y AS 
32 Z Z 5A z 7A Z E9 z A9 
33 0 0 30 OLE 10 0 FO OLE 10 
34 I 1 31 OCI II I FI OCI II 
35 2 2 32 OC2 12 2 F2 OC2 12 
36 3 3 33 OC3 13 3 F3 TM 13 

-

37 4 4 34 OC4 14 4 F4 OC4 3C 

3AE7A 

1-~.-6 
60435400 A 



DISPLAY ASCII EBCDIC 
CODE UPPERCASE LOWERCASE UPPERCASE LOWERCASE 

OCTAL CHAR CHAR HEX CHAR HEX CHAR HEX CHAR HEX 

40 5 5 35 NAK 15 5 F5 NAK 3D 
41 6 6 36 SYN '6 6 F6 SYN 32 
42 7 7 37 ETB 17 7 F7 ETB 26 
43 8 8 38 CAN 18 8 F8 CAN 18 
44 9 9 39 EM 19 9 F9 EM 19 
45 + + 2B VT OB + 4E VT OB 
46 - - 20 CR 00 - 60 CR 00 
47 ~ * 2A LF OA * 5C LF 25 
50 / / 2F SI OF / 61 SI OF 
51 <. ( 28 BS 08 ( 40 BS 16 
52 ) ) 29 HT 09 ) 50 HT 05 
53 $ $ 24 EOT 04 $ 5B EOT 37 
54 = = 3D GS 10 = 7E IGS 10 

55 SP SP 20 NUL 00 SP 40 NUL 00 
56 , , 2C FF OC , 6B FF OC 

. 57 . 2E SO OE . 48 SO ()E 

60 - =If: 23 ETX 03 =If: 78 ETX 03 
61 [ [ 5B FS IC ¢ ·4A IFS IC 
62 ] ] 50 SOH 01 I 5A SOH 01 
63 % % 25 ENQ 05 0/0 6C ENQ 20 
64 * 

II 22 STX 02 \I 7F STX 02 

65 ~ - 5F DEL 7F - 60 DEL 07 
66 V I 21 } 70 I 4F } DO 
67 1\ a 26 ACK 06 a 50 ACK 2E 
70 t I 27 BEL 07 I 70 BEL 2F 
71 l ? 3F US IF ? 6F IUS IF 
72 < < 3C { 78 < 4C { CO 
73 > > 3E RS IE > 6E IRS IE 
74 ~ @ 40 " 60 @ 7C , 79 

75 ~ \ 5C I 7C \ EO I 6A I I 

76 --, 1\ 5E "'-I 7E --, 5F "'-I Al 
77 ; ; 3B ESC IB . 5E ESC 27 1 

3AE8A 

60435400 A l-A-7 



CARRIAGE CONTROL CHARACTERS 

1-A-8 

CHARACTER COMMAND 

SPACE SINGLE SPACE 

I EJECT PAGE BEFORE PRINT 
0 SKIP ONE LINE BEFORE PRINT (DOUBLE SPACE) 

- SKIP TWO LINES BEFORE PRINT (TRIPLE SPACE) 

+ SUPPRESS SPACE BEFORE PRINT 

/ SUPPRESS SPACE AFTER PRINT 

2 SKIP TO LAST LINE OF FORM BEFORE PRINT 

8 SKIP TO FORMAT CHANNEL I BEFORE PRiNT t 
7 SKIP TO FORMAT CHANNEL 2 BEFORE PRINT t 
6 SKIP TO FORMAT CHANNEL 3 BEFORE PRINT t 
5 SKIP TO FORMAT CHANNEL 4 BEFORE PRINT t 
4 SKIP TO FORMAT CHANNEL 5 BEFORE PRINT t 

3 SKIP TO FORMAT CHANNEL 6 BEFORE PRINT t 
H SKIP TO FORMAT CHANNEL I AFTER PRINT 

G SKI P TO FORMAT CHANNEL 2 AFTER PRINT 
F SKI P TO FORMAT CHANNEL 3 AFTER PRINT 

E SKIP TO FORMAT CHANNEL 4 AFTER PRINT 

D SKIP TO FORMAT CHANNEL 5 AFTER PRINT 

C SKIP TO FORMAT CHANNEL 6 AFTER PRINT 
Q CLEAR AUTO EJECT; REMAINDER OF LINE IS 

NOT PRINTED 

R SET AUTO EJECT; REMAINDER OF LINE IS 
NOT PRINTED 

S SELECT 6 LINES/INCH; t t REMAINDER OF 
LINE IS NOT PRINTED 

T SELECT 8 LINES/INCH; t t REMAINDER OF 
LINE IS NOT PRINTED' 

3AE9A 

tNo space after print. For all other control characters, a line 
feed is issued after print. 

ttUsed only on the 512 and 580 line printers. The deselection 
of auto eject mode on a 512 or 580 line printer results in the 
deselection of 8 lines per inch, if previously selected. 

60435400 A 



DAYFILE MESSAGES 

This appendix contains an alphabetical listing of the messages which may appear in a 
user's dayfile. Lowercase characters are used to identify variable names or fields. 
If the first word or characters are variable, the message is listed according to the 
secbnd word. For example, the message 

pfn ALREADY PERMANENT, AT nnn. 

is listed alphabetically with the messages beginning with the letter A. This is done 
because the variable pfn (permanent file name) may change each time the message is 
issued. All messages beginning with numbers follow the alphabetical listing. 

B 

The CIa and PFM file processors utilize the file environment table (FET) as a communi­
cation area to contain information about the requests of a user's job. Higher level 
languages (COBOL, FORTRAN, etc.) automatically establish and use these areas but the 
COMPASS programmer must define the FET. (Refer to volume 2 for detailed infor­
mation on the FET.) CIa and PFM error messages contain the address, nnn, of the 
FET associated with the request and the logical file name, fff, from word zero of the 
table (FET+O). 

When the error processing (ep) bit is set in word 1 of the FET, status information is 
returned by the function processor when an abnormal situation or error occurs. The 
abnormal termination codes are returned to bits 10 through 13 of' word zero of the FET 
(bits 10 through 17 of PFM). Following the alphabetical listing of messages is a list 
of LFM and ~FM error codes and explanations. Also included at the end of this sec­
tion is a table summary o.f the action taken by PFM when an error is detected while 
reading mass storage. 

60435400 A I-B-l 



I--ol 
I 

OJ 
I 

t\:) 

0) 

o 
.;::.. 
~ 
01 
.;::.. 
o 
o 
Ci 

Message 

ACCOUNT BLOCK LIMIT. 

ADDRESS ERROR. 

ADDRESS OUT OF RANGE aaaaaa. 

pfn ALREADY ·PERMANENT. AT nnn. 

ARG. ERROR. 

ARGUMENT ERROR. 

ARITH. ERROR x AT yyyyyy. 

BAD DECK NAME. 

BINARY SEQ. ERROR. RECxxxx CDyyyy. 

BLANK TAPE. fff AT nnn. 

BLOCK COUNT ERROR IN TRAILER LABEL, fff AT nnn. 
I 

BLOCK LENGTH ERROR ON fff AT nnn. 

BLOCK SEQUENCE ERROR, fff AT nnn. 

BLOCK TOO LARGE ON fff AT nnn. 

BOT/EOT ENCOUNTERED, fff AT nnn. 

BUFFER ARG. ERROR. 

BUFFER ARGUMENT ERROR. 

Routine 

3AB 

TCS 

CPMEM 

PFM 

LOR 

RESEX/ISF 

3AB 

TCS 

lMT 

lMT 

lMT 

lMT 

lMT 

lMT 

TCS 

QFM 

Description 

The monitor detected the expiration of the account block SRU limit. 

COM address in call is beyond the field length. 

The address aaaaaa on a correction statement is greater than or equal to the 
user's field length. The correction statement is ignored and LOC continues. 

The user has already saved or defined a file with the name specified. 

LOR parameters were outside the user's field length. 

A control statement is syntactically incorrect. Recheck parameters. On tape 
management statements, the system issues this message if both ring enforcement 
options (PO=R and PO=W) or more than one EOT option (PO=l, PO=P, PO=S) 
is specified. 

The monitor detected an arithmetic error condition x at address yyyyyy. 

A deck name of more than 7 characters was encountered. 

A binary card was found to be out of sequence and the job was terminated.· 

xxxx Number (in octal) of record in which sequence error occurred. 

yyyy Number (in' octal) of card within the record which caused the 
sequence error. 

A blank tape was encountered on a read operation. (Blank tape is defined as 
more than 25 feet of erased tape.) 

The block count in the EOFl or EOVl label did not match the block count 
maintained by the tape executive during the read operation. 

The software-recorded block length did not match the length of the block read 
(this message applies to I format tapes only). 

The software-recorded block length did not match the length of the block read, 
or the block number did not match the software-record block number (this 
message applies to I format tapes only). 

The tape being read contained a data block greater in size than that allowed by the speci­
fied format or by user declaration (this message applies to S or L format tapes only). 

Indicates an abnormal tape position. 

CM address in call is not less than the field length minus the word count; buffer 
extends past the job's field length. 

A buffer pointer did not conform to the following constraints. 

FIRST ~ IN 
FIRST ~ OUT 
OUT < LIMIT ~, FL 

I 

I 



m 
o 
~ 
CI.) 

CJ1 
~ 
o 
o 
n 

to--' 
I 

b:l 
I 

CI.) 

Message 

BUFFER ARGUMENT ERROR ON fff AT nnn. 

BUFFER CONTROL WORD ERROR ON fff AT nnn. 

pfn BUSY, AT nnn. 

n CARD(S) NOT PROCESSED. 

CATALOG OVERFLOW - FILES, AT nnn. 

CATALOG OVERFLOW - SIZE AT nnn. 

CHANNEL MALFUNCTION, fff AT nnn. 

CHARGE ABORTED. 

CHARGE FILE BUSY. 

CHARGE ILLEGAL AT THIS HOUR. 

CHECKPOINT nnnn COMPLETE. 

CHECKPOINT nnnn COMPLETED TO XXXXxxx. 

CHECKPOINT FILE ERROR. 

CHECKPOINT NOT FOUND. 

CKP REQUEST. 

CM NOT VALIDATED. 

Routine 

CIO/lMT 

Description 

A buffer pointer did not conform to the following constraints. 

FIRST ~ IN 
FIRST S. OUT 
OUT < LIMIT ~ FL 

The system provides a dump of the FET on file OUTPUT. 

I 

CIO/lMT The block length specified during a write operation was greater than the allowable PRU I I 
size for the device. For tape operations, this message can also indicate that the unused 

PFM 

PFM 

PFM 

lMT 

CHARGE 

CHARGE 

CHARGE 

CHKPT 

CHKPT 

bit count is illegal or that an attempt was made to write a record shorter than the noise 
record size. 

The specified direct access file is attached in the opposite mode, or it 
is currently being accessed by one of the following. 

• More than 77B users in READ mode 

• More than 77B users in READAP mode 

• More than 7777B users in READMD mode 

Errors on n directive!! prevented them from being processed. 

The number of files in the user's catalog exceeds his limit (refer to LIMITS 
control statement, section 6). 

The cumulative size of the indirect access files in the user's catalog exceeds 
his limit (refer to LIMITS control statement, section 6). 

Hardware malfunction. 

A central site operator action caused the CHARGE operation to abnormally termi­
nate. Resubmit job. 

The file which the system uses to validate charge number and project number is 
busy. lResubmit job. 

The specified project number cannot be used at this time of the day. 

Indicates that checkpoint nnnn has been completed.- Issued if only one checkpoint 
file is present. For a checkpoint operation, more than two checkpoint files or an 
illegal combination of checkpoint files were speCified. 

Indicates that checkpoint nnnn has been completed to file xxxxxxx. Issued if 
alternate CB checkpoint files are used. 

CHKPT /RESTART I During a restart operation, either the checkpoint file lfn specified on the RESTART 
control statement was empty or RESTART detected a format error attempting to 
read the specified checkpoint file. 

RESTART The speCified checkpoint (nn parameter on RESTART statement) could not be 
found on the file. 

CHKPT I A checkpoint has been initiated. 

TCS The number of CM words specified on the job statement exceeds that for which the 
user is validated. 

I 



t---A 
I 

b:I 
I 
~ 

0) 

o 
~ 
Col) 

CJ1 
~ 
o 
Q 

(') 

Message 

COMPILER NOT IN LIBRARY. 

CONTROL CARD ARGUMENT ERROR. 

CONTROL CARD ERROR. 

'CONTROL STATEMENT LIMIT. 

CONVERSION NOT FOUND. 

CONVERSION NOT SPECIFIED. 

COpy COMPLETE. 

CORE OVERFLOW, JOB ABORTED. 

CPxx, •••.• 

CPM ARG. ERROR. 

CPM ILLEGAL REQUEST. 

CPU ERROR EXIT xx AT yyyyyy. 

CRxx, •••• 

CUX • ILLEGAL 'USER ACCESS 

DATA BASE ERROR. 

: I DATA BASE ERROR n. 

DATA TRANSFER ERROR, AT nnn. 

DAYFILE TERMINATED 

xxxxxx DAYFILE TERMINAT~D. 

Routine 

TCS 

QFSP 

lAJ 

PFM 

COpy 

CPM 

CPM 

CPM 

lAJ 

CHARGE I 
MOD VAL 

PROFILE 

PFM 

SFM 

SFM 

Description 

An LDC control statement requested loading of a compiler not on the system. 

An invalid argument was encountered on a control statement. 

Loader failed to find the requested file. 

The number of control statements processed for a job has exceeded the limit for 
which the user is validated. 

The conversion table specified by the TS option was not found. 

Neither a TS nor 64 option was specified on a CONVERT control statement. 

Informative message issued when a system file copy is complete. 

Table overflow occurred; rerun using more central memory field length. 

Refer to the EQxx, ••• series of corresponding messages for full descriptions of 
messages beginning with CPxx, ••• 

Error(s) encountered and job aborted. 

A CPM function was issued without the auto recall specified or job was not of 
system origin. 

Monitor has detected a CPU error exit condition xx at address yyyyyy (refer 
to Error Control, section 3). 

Refer to the EQxx, ••• series of corresponding messages for full descriptions of 
messages beginning with CRxx, ••• 

Account not validated for system privileges. 

One.lOf the following: 
The system detected an error in its validation file. 
The user should contact installation personnel. 

An abnormal error has been detected. Notify the analyst. 

An error occurred in a read operation during a file transfer. 

Informative message issued to the terminated dayfile. 

Informative message indicating dayfile xxxxxx has been terminated (issued to 
system and control point dayfiles). 

I 



0) 

o 
~ 
CI.) 

C1l 
~ 
o 
o 
() 

t-4 
I 

t:d 
I 

C1l 

Message 

DExx, Cyy, ec, ann, Stttt,Axxxxxxx. 

DEMAND EXCEEDED.1 

DEMAND INSTALLATION ERROR. 

DEMAND VALIDATION ERROR. 

DENSITY CHANGE, fff AT nnn. 

DEVICE ERROR ON FILE fff AT nnn. 

DEVICE UNAVAILABLE, AT nnn. 

Routine 

6DE 

RESEX 

RESEX 

RESEX 

IMT 

CIO 

PFM 

Description 

An error has been detected on extended core storage. The nature of the error 
is determined by examining each parameter in the message. 

xx EST ordinal of ECS unit 
yy Channel number 
ec Error code: one of the following: 

PE Parity error/checkword error 
AD Address error 
ST DevicE' status error 
RS Device reserved 
NR Device not ready 

a Type of operation: one of the following: 

nn 

tttt 

R Read 
W Write 

Retry count: error is considered irrecoverable after fhefollowlng 
number of retries: 

PE 10 
AD 10 
ST 64 
FN 10 
RS Indefinite 
NR Indefinite 

Device status: implies there was an incomplete transfer if status 
does not indicate an error 

Axxxxxxx Physical address at b~~!nning of block 

The user attempted to assign more units than he scheduled on the RESOURC 
statement. 

'The user requested more units than exist at the installation. 

The specified number of units exceeds the user's validation limits. 

The density of the tape changed during a read or write operation. If this error 
occurs on the first block on the tape, the additional message 

DENSITY SPECIFIED DIFFERENT FROM TAPE. 

is issued. In requesting the tape, the user should specify the density in which 
the tape was written. 

An irrecoverable error occurred on the mass storage device containing the file fff. 

Access to the permanent file device requested is not possible. User may have 
attempted to access files on a device not present in the alternate system. 

I 



J-A 
I 

to 
I 
0) 

0) 

o 
~ 
~ 
C11 
~ 
o 
o 
(i 

DIxx. Cyy. ec. ann. Stttt. FNqqqq. 
or 

Message 

DIxx. Cyy. ec. ann. Stttt. Uuu Ccccc Sttss. 

DIRECT ACCESS DEVICE ERROR. AT nnn. 

DIRECTIVE ERRORS. 

n DIRECTIVE ERROR(S). 

DIRECTIVE CARD ERROR. 

Routine 

6DI 

PFM 

PROFILE I 
MODVALI 
OPLEDIT 

PROFILE 

PROFILE 

Description 

An error has been detected on mass storage device xx. The nature of the error 
is determined by examining each parameter in the message. 

xx EST ordinal of 844-21 disk 
yy Channel number 
ec Error code (one of the following): 

PE Parity error I checkword error 
AD Address error 
ST Device status error 
FT Function timed out with no response 
RS Device reserved 
NR Device not ready 
CR Controller reserved 

a Type of operation (one of the following): 

R Read 
W Write 

nn Retry count; error is considered irrecoverable after the following 

tttt 

number of retries: 

PE 10 
AD 10 
ST 64 
FT 3 
RS Indefinite 
NR Indefinite 
CR Indefinite 

Device status; implies there was an 
status does not indicate an error 
Function which timed out 

incomplete transfer if 

qqqq 
Uuu 
Ccccc 
Sttss 

Physical unit I 
Physical cylinder PhYSical address 
tt Physical track 
ss Physical sector 

The specified file already exists on a device other than the device requested or an 
illegal device type was specified. The device on which the file resides may not 
contain direct access files because: 

• The device is not specified as a direct access device in the catalog 
descriptor table. . 

• The device is not specified as ON and initialized in the catalog 
descriptor table. 

• The device is a dedicated indirect access permanent file device. 

If on an alternate system. the user's master device may not have been transferred 
to that system. 

An invalid directive statement was encountered. If the message is issued in re­
sponse to a PROFILE request. refer to the specific directive errors as listed for 
output file diagnostics. 

Occurs when there are conflicts or omissions in implied deletes or insertions. 

Occurs when an illegal directive statement is encountered; for example. syntax 

I 

error. II 
I 



0') 

o 
~ 
00 
CJ1 
~ 
o 
o 
(J 

J-4 
I 
to 
I 

..;J -

Message Routine 

DJxx, Cyy, ec, ann, Stttt, FNqqqq. , 6DJ 

or 
DJxx, Cyy, ec, ann, StUt, Uuu Ccccc SUss. 

Description 

An error was detected on mass storage device xx. The nature of the error is 
determined from the parameters in the message. 

xx EST ordinal of 844-41 disk 
yy Channel number 
ec Error code (one of the following): 

PE Parity error / checkword error 
AD Address error 
ST Device status error 
FT Function timed out with no response 
RS Device reserved 
NR Device not ready 
CR Controller reserved 

a Type of operation (one of the following): 

R Read 
W Write 

nn Retry count; error is considered irrecoverable after the following 
number of retries: 

PE 10 
AD 10 
ST 64 
FT 3 
RS Indefinite 
NR Indefinite 
CR Indefinite 

tttt Device status; implies there was an incomplete transfer if the status 
I 

does not indicate an error 
I 

qqqq Function which timed out 
Uuu Physical unit 

1 Physical address 
Ccccc Physical cylinder 

i sttss tt PhYSical track 
ss Physical sector 

----



• 
...... 
I 

to 
I 

co 

m 
o 
~ 
CJ.) 

01 
~ 
o 
o 
(j 

Message 

DPxx, Cyy, ec, ann, Stttt, Axxxxxxx. 

DSP - CAN NOT ROUTE JOB INPUT FILE. 

DSP - COMPLETE BIT ALREADY SET. 

DSP - DE \nCE UNA VAILABLE 

DSP - FILE NAME ERROR. 

DSP - FILE NOT ON MASS STORAGE. 

DSP - FILE ON REMOVABLE DEVICE. 

DSP - FORMS CODE NOT ALPHANUMERIC. 

DSP - FNT/DEVICE FULL. 

DSP - ILLEGAL FILE TYPE. 

DSP - ILLEGAL ORIGIN TYPE 

DSP - ILLEGAL REQUEST. 

Routine 

6DP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

Description 

An error has been detected on distributive data path (DDP). The nature of the 
error is determined by examining each parameter in the message. 

xx EST ordinal of DDP/ECS 
yy Channel number 
ec Error code (one of the following): 

PE Parity error/checkword error 
AD Address error 
ST Device status error as Device reserved 
NR Device not ready 

a Type of operation (one of the following): 

nn 

tttt 

Axxxxxxx 

R Read 
W Write 

Retry count; error is considered irrecoverable after the following 
number of retries: 

PE 10 
AD 10 
ST 64 
FN 10 
RS Indefinite 
NR Indefinite 

Device status; implies there was an incomplete transfer if status 
does not indicate an error 

Physical address at beginning of block 

The job input file cannot be routed. 

The complete bit was not cleared before DSP was called. 

DSP attempted to create a file on a device that was turned ofr or currently 
unavailable for access. 

An attempt was made to create a rile with an invalid file name. 

An attempt was made to route a file not on. mass storage. 

A rile on a removable device cannot be routed. 

Forms code must consist of two alphanumeric characters. 

There is no space in the FNT or on the device. for current use. 

. The file being processed is not a PRFT, PHFT, INFT, or LOFT file type. 

DSP cannot route the rile to the input queue with the origin type specified 
by the caller. 

One or the following: 

1. DSP was not called with recall (does not apply when queue priority 
is greater than MXPS). 

2. Parameter list address was out of range. 



0) 

o 
~ 
CA:I 
CJl 
~ 
o 
o 
(j 

..... 
I 

ttl 
I 

CO 

• 

Message 

DSP - ILLEGAL USER CARD. I 

DSP - IMMEDIATE ROUTINE - NO FILE. 

DSP - INVALID DISPOSITION CODE. 

DSP - INVALID EXTERNAL CHARACTERISTICS 

DSP - INVALID TID. 

DSP - I/O SEQUENCE ERROR, 

DSP - LOCAL FILE LIMIT. 

DSP - OUTPUT FILE LIMIT. 

DSP - ROUTE TO INPUT NOT IMMEDIATE. 

DSP - THIS ROUTING NOT ALLOWED. 

DSP - TOO MANY DEFERRED BATCH JOBS. 

DUMP FWA • GEl. LWA+1. 

DUPLICATE COMMON FILE NAME 

DUPLICATE FILE NAME. 

DUPLICATE LINES. 

DUPLICATE PROJECT NUMBER. 

DUPLICATE USER NUMBER. 

Routine 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

CPMEM 

LFM 

LFM 

PROFILE 

PROFILE 

Description 

User attempted to route a file with an illegal USER statement to the input queue. 

The specified file for the immediate routing could not be found. 

Specified disposition code is not recognized. 

Caller specified an undefined external characteristic code. 

One of the following: 

1. 

2. 

User number and family name parameters were not in CM field length. 

TID is greater than or equal to IDLM for batch jobs. 

3. User number specified in parameter block does not compare with 
user number in control point area. 

A request was made on a busy file. 

User has exceeded his /her local file validation limits. 

Caller has exceeded his {her output file validation. 

Routing a file to the input queue must be immediate. 

An attempt was made to change the origin type or queue type of a deferred 
routed file. 

User has more jobs in the system than allowed. This check is ignored 
for users with system origin privileges. 

The first word address of memory to be dumped was greater than the last word 
address plus 1 of memory. 

A file of the same name as that specified in a COMMON or STAGE request already 
exists. 

The file specified already exists in the system. 

Lines being dumped during a DMP operation were duplicated and suppressed. 

During a create run. PROFILE detected two or more identical project numbers 
within one charge number entry. The first project number is retained; all 
subsequent duplicate numbers are disregarded. All other project numbers are 
processed normally. 

This message is printed if PROFILE detected two or more identical user num­
bers in one project number entry. or the user attempts to update the project 
profile file by adding a user number that already exists under the specified project 
number. The entire proejct number entry containing the duplicate user numbers is 
disregarded. -



.-
I 
to 
I .­
o 

0) 

o 
~ 
CA) 

CJ1 
~ 
o 
o 
Ci 

ECS LOAD ERROR. 

EDITING COMPLETE. 

lfn EMPTY. AT nnn. 

EMPTY CATALOG. 

EMPTY SORT INPUT FILE. 

Message 

END OF INFORMATION ENCOUNTERED. 

END OF TAPE, fff AT nnn. 

ENQUIRY COMPLETE. 

ENTRY POINT NOT FOUND. 

EOF ENCOUNTERED BEFORE TERMINATION. 

EOI ENCOUNTERED BEFORE TERMINATION. 

EQ. Ccc-e-uu. vsn. rw. est. Sss. sconl' scon2' 
EQ. Ccc-Fff. Iii. Bnnnnnn. Lbbbb. Ppppppppp. 
EQ. Ccc. Eec. HOOOOOOOOO. type. 

Routine 

3AE 

PFM 

CATLIST 

MSORT 

COpy 

IMT 

ENQUIRE 

3AD 

IMT 

Description 

Bad load address from ECS. 

Informative message. 

The file specified on a SAVE request contains no data. 

No entries are present in the catalog. 

File lfn specified on the SORT control statement contains no data. 

Informative message issued when a local file copy is completed. 

The end of tape was encountered. 

Informative message issued when processing of ENQUmE control statement 
is completed. 

The specified entry point could not be found on the overlay file. 

An end-of-file was encountered on a CONVERT input file before the specified 
record count was reached. 

An end-of-information was encountered on a CONVERT input file before the 
specified record count was reached. 

Three-line message describing a magnetic tape hardware malfunction occurring 
on a 657 or 659 tape unit. 

EQ MT for 657; NT for 659 

The first line provides the following information. 

cc-e-uu 

vsn 

rw 

est 

ss 

sconl 
scon2 

Channel. equipment (tape controller). and physical unit num­
ber of tape unit on which error was encountered. 
Volume serial number associated with the tape on the specified 
unit. 
Read (RD) or write (WR) operation: any operation not involving 
an actual read or write is listed as a read. 
EST ordinal of the unit on which the tape was written. This is 
provided only for labeled tapes generated under NOS 1. 0; other­
wise. the field is blank. 
Status yi the 6681/6684 interface. First digit represents a OO where 
bit a=2 of status; second digit represents bits 22-20 of status. 
Status of the tape controller. 
Status-2 of the controller. if available. 

The second line of the message contains: 

cc Channel number; the channel number is repeated to allow the 
analyst to associate this message with the first message if errors 
are occurring on more than one tape channel at the same time. 

ff Software function on which the error occurred. 
ii Error iteration; number of times error has been encountered on 

this unit without successful recovery. 
nnnnnn mock number on which error occurred. 
bbbb Length of block on which error occurred. in octal bytes. 
pppppppp IMT internal error parameters. 

I 

I 



(j) 

o 
~ 
~ 
c:.n 
~ 
o 
o 
(J 

"'"' I 

t:d 
I 

"'"' "'"' -

Message 

'-

EQ. Ccc-uu. vsn. rw. est. Ss. GSgggg. 
EQ. Ccc. Dddd ••• d 
EQ. Ccc. Fff. Iii. Bnnnnnn. Lbbbb. Ppppppppp. 
EQ. Ccc. Eec. Hhhhhhhhh. type. 

Routine 

IMT 

Description 

The third line of the message contains the following information. 

cc Channel number; the channel number is repeated to allow the 
analyst to associate this message with the first and second mes­
sages if errors are occurring on more than one tape channel at 
the same time. 

ec Octal error code value. 
0000000000 Controller options selected at the time of the error; each two 

type 
digits is a function code. 
Addi tional description of the error (one of the following): 

BAD ERASE. Error detected after an erase was attempted to 

BLOCK TOO 
LARGE 
BUSY. 
CHANNEL ILL. 

CON. REJ. 
CON. REJ. OFF. 

DENSITY 
CHANGE. 

FNnn. Pyyyy. 

Lbbbb. Bnnnnnn. 

NO EOP. 

NOISE. 
NOT READY. 
ON THE FLY. 
POSITION 
LOST. 
RECOVERED. 

STATUS. 

WRONG 
PARITY. 

recover a write error. 
Data block was larger than expected. 

Unit was still busy after 1 second. 
Channel is not accepting function or status 
requests properly. 
Connect reject; unable to connect to the unit. 
Connect reject; unable to connect to unit. Unit 
turned OFF. 
Either user error where auto select does not 
match user selection (O-track only) or hardware 
error where status does not match user selection. 
Function nn was rejected by the controller; yyyy 
is the address in IMT where the function was 
initiated. 
The length (bbbb) and block number (nnnnnn) read 
from trailer bytes in block did not match the 
actual length or the block number read; given in 
previous message line. 
No end-of-operation detected from unit within 
second. 
A noise block was skipped on the tape. 
Tape unit dropped ready status. 
Error was corrected as the data was read. 
The last good block written cannot be found during 
write recQvery. 
Previously reported error has been successfully 
recovered. 
Error type cannot be determined so actual con­
troller status is returned. 
Tape was written in parity opposite that being 
read. 

Four-line message describing a magnetic tape hardware malfunction occurring on 
a 667 or 669 tape unit. 

EQ MT for 667; NT for 669 

The first line provides the following information. 

cc-uu 

vsn 

Channel and physical unit number of tape unit on which error 
was encountered. 
Volume serial number associated with the tape on the specified 
unit. 



-
t-' 
I 
td 
I 

t-' 
l\:) 

0) 
o 
~ 
Col:) 

01 
~ 
o 
o 
n 

Message Routine 

rw 

est 

s 
gggg 

Description 

Read (RD) or write (WR) operation; any operation not involving an 
actual read or write is listed as a read. 
EST ordinal of the unit on which the tape was written. This is 
provided only for labeled tapes generated under NOS 1.0; otherwise, 
the field is blank. 
Channel status. 
General status of magnetic tape unit. 

The second line of the message contains: 

cc 

ddd ••• d 

Channel number; the channel number is repeated to allow the 
analyst to associate this message with the first message if errors 
are occurring on more than one tape channel at the same time. 
Detailed status of magnetic tape unit. 

The third line of the message contains: 

cc 

ff 
ii 

nnnnnn 
bbbb 
pppppppp 

Channel number; repeated to associate this message with the 
previous messages. 
Software function on which the error occurred. 
Error iteration; number of times error has been encountered on 
this unit without successful recovery. 
Block number on which error occurred. 
Length of block on which error occurred, in octal bytes. 
1MT internal error parameters. 

The fourth line of the message contains: 

cc Channel number; repeated to associate this message with the 
previous messages. 

ec Octal error code value. 
hhhhhhhh Unit format parameters. Refer to Magnetic Tape Subsystem 

Reference Manual for descriptions of unit format parameter fields. 
type Additional description of the error (one of the following): 

BAD ERASE. Error detected after an erase was attempted to 
recover a write error. 

B. C. RESTART. Magnetic tape controller firmware restarted. 
BLOCK TOO Data block was larger than expected. 
LARGE. 
BUSY. Unit was still busy after 1 second. 
CHANNEL ILL. Channel is not accepting function or status re­

quests properly. 
CON. REJ. Connect reject; unable to connect to the unit. 
CON. REJ. OFF. Connect reject; unable to connect to unit. Unit 

turned OFF. 
DENSITY Either user error where auto select does not 
CHANGE. match user selection (9-track only) or a hardware 

error where status does not match user selection. 
FNnn, Pyyyy. Function nn was rejected by the controller; yyyy 

is the address in 1MT where the function was 
initiated. 

Lbbbb. Bnnnnnn. The length (bbbb) and block number (nnnnnn) read 
from trailer bytes in block did not match the 
actual length or the block number read; given in 
previous message line. 



0) 

o 
~ 
~ 
CJ1 
~ 
o 
o 

o 

I-l 
I 

b:I 
I 
I-l 
~ -

Message 

EQxx. CHyy Adddd INCOMPLETE TRANSFER. 

EQxx. CHyy CONTROLLER HUNG BUSY. 

EQxx. CHyy Fzzzz FUNCTION TIMEOUT. 

Routine 

110 I 

110 

110 

NO EOP. 

NOISE. 
NOT READY. 
ON THE FLY. 
POSITION 
LOST. 
RECOVERED. 

STATUS. 

WRONG 
PARITY. 

Description 

No end-of-operation detected from unit within 
second. 
A noise block was skipped on the tape. 
Tape unit dropped ready status. 
Error was corrected as the data was read. 
The last good block written cannot be found 
during write recovery. 
Previously reported error has been successfully 
recovered. 
Error type cannot be determined so actual con­
troller status is returned. 
Tape was written in parity opposite that being 
read. 

An incomplete data transfer was detected by a local batch equipment driver. 

EQ One of the following equipment types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 
dddd Octal byte count not transferred 

The specified local batch controller did not drop BUSY status. 

EQ One of the following equipment types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 

No response (inactive) was received after issuing a function code to the specified 
local batch equipment (converter and equipment status unavailable). 

EQ One of the following equipment types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 
zzzz Function code 



-
'"'"' I 

to 
I 

'"'"' It:::-

0) 

o 
It:::­
CAl 
c:.n 
It:::­
O 
o 
n 

Message Routine 

EQxx, CHyy Fzzzz REJ Paaaa, Cbbbb, Ecccc. 110 

EQxx, CHyy RESERVED. 110 

EQxx, CHyy TURNED OFF. 110 

EQxx, DNdn, DIRECT ACCESS FILE ERROR, AT nnn. PFM 

EQxx, DNdn, FILE LENGTH ERROR, AT nnn. PFM 

Description 

Detected function reject or transmission parity error on the specified local batch 
. equipment. 

EQ One of the following equiprr.ent types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 
zzzz Function code 
aaaa Driver (lCD) address 
bbbb Converter status 
cccc Equipment status 

The specified local batch equipment is reserved and cannot be connected on 
channel yy. 

EQ One of the following equipment types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 

The specified local batch equipment was logically turned off (OFF status set in 
EST). Note that this message is preceded in the error log by a message for the 
same equipment which specifies the failing condition. 

EQ One of the following equipment types: 

CP 415 card punch 
CR 405 card reader 
LP 512 or 580 line printer 
LQ 512 line printer 
LR 580 line printer 

xx EST ordinal of local batch equipment 
yy Channel number 

The system sector data for the file does not match the catalog data. 

xx 
dn 

EST ordinal of device 
Device number 

The length of a file does not equal the catalog length. 

xx 
dn 

EST ordinal of device 
Device number 



0) 

o 
~ 
w 
CJ1 
~ 
o 
o 
() 

~ 
I 

to 
I 
~ 
CJ1 -

Message Routine 

EQxx, DNdn, MASS STORAGE ERROR AT nnn. PFM 

EQxx, DNdn, RANDOM INDEX ERROR, AT nnn. PFM 

EQxx, DNdn, REPLACE ERROR, AT nnn. PFM 

EQxx, DNdn, TRACK LIMIT, AT nnn. PFM 

Description 

The action taken depends on the type of command issued. 

Command 

GET 

SAVE 

REPLACE 

~ 
A local file is created with length being the actual length 
retrieved. 
If file length is longer than TRT specification, file is 
truncated. 
Same as for SAVE. 

An error was encountered in reading a portion of the permanent file catalog or 
permit information. 

xx 
dn 

EST ordinal of device 
Device number 

The random disk address of the permit sector is in error. 

xx EST ordinal of device 
dn Device number 

The same file was found twice during a catalog search. This error can occur for 
APPEND or REPLACE commands after a file is found and purged and the catalog 
search is continued. 

xx 
dn 

EST ordinal of device 
Device number 

No allocatable tracks remain on equipment xx. 

xx EST ordinal of device 
dn Device number 



~ 
I 
bj 
I 
~ 
Q) 

Q) 
e 
H::­
CA) 

CJ1 
H::­
e 
e 
() 

Message 

EQxx. RM=mmmmmmm. PF=ppppppp, UI=iiiiii. 

EQUIPMENT NOT AVAILABLE 

ERASE LIMIT, Hf AT rum. 

ERROR AT LINE xxx 

ERROR CODE xx, Un AT addr. 

ERROR IN ARGUMENTS 

ERROR IN COMMAND PARAMETERS. 

ERROR IN DATE. 

ERROR IN DEVICE NUMBER. 

ERROR IN DIRECTORY. 

ERROR IN FILE ARGUMENTS 

Routine 

PFM 

LFM/RESEX 

lMT 

lMT 

PURGALL 

PURGALL 

FILES 

Description 

Additional line written only in error log after one of the following messages. 

EQxx, DNdn, DIRECT ACCESS FILE ERROR, AT nnn. 
EQxx, DNdn, FILE LENGTH ERROR. AT nnn. 
EQxx, DNdn.MASS STORAGE ERROR. AT nnn. 
EQxx, DNdn, RANDOM INDEX ERROR, AT nnn. 
EQxx. DNdn, REPLACE ERROR, AT nnn. 
EQxx, DNdn. TRACK LIMIT. AT nnn. 

xx 
mmmmmmm 
ppppppp 
iiiiii 

EST ordinal of device 
Family name 
Permanent file name 
User index 

Requested equipment is either in use or does not exist. 

The system made 20 erasures (10 feet of tape) without being able to successfully 
write the tape. 

Issued when errors occur while resequencing a BASIC program. The line con­
taining the error is specified by xxx. 

lMT error code xx has occurred but no specific message is issued. This would 
normally not occur unless the job was dropped by the operator. 

One or more of the following conditions were detected. 

• More than one date was entered. 

• No options were selected. 

• The parameter was illegal or could not be recognized. 

• The TM option was selected but no data was specified. 

• Both the device number parameter and the packname or auxiliary device 
parameter were selected; auxiliary devices do not have device numbers. 

Either no parameters are allowed or an illegal parameter has been encountered. 

The format of the date (ad. md, or cd) parameter in a PURGALL request was 
incorrect. ' 

The file residency as specified by the device number parameter was illegal. 

Program library does not have a directory record or has an incorrectly for­
matted directory record. 

The parameter could not be recognized. 

I 
I 

I 

I 



C') 

e 
.,p. 
~ 
c.n 
.,p. 
e 
e 
(') 

t-4 
I 

to 
I 

t-4 
-.:J 

ERROR IN FILE CATEGORY. 

ERROR IN FILE TYPE. 

ERROR IN IDENTIFIER. 

Message 

ERROR IN ROUTE FUNCTION, LFN =filenam. 

ERROR IN LIMITS ARGUMENT. 

ERROR IN NUMERIC DATA. 

ERROR IN PASSWOR ARGUMENTS. 

ERROR IN PROFILE ARGUMENTS 

ERROR IN TIME. 

ERROR - FILE(S) NOT PROCESSED. 

FAST-ATTACH PROFILE FILE ILLEGAL. 

FET ADDRESS OUT OF RANGE AT nnn. 

FET PARAMETER ERROR ON fff AT nnn. 

nnnn FILE DEQUEUED Dndn FMxxxxxxx. 

FILE EMPTY. 

Routine 

PURGALL/ 
PFILES 

PURGALL 

PROFILE/ 
MODVAL 

DSP 

PROFILE/ 
MODVAL 

PROFILE 

PURGALL 

CHKPT 

PROFILE 

CIO 

CIO 

QREC 

LFM/SFM/QFM 

Description 

The user specified an illegal file category. 

The user specified an illegal file type. 

PROFILE cannot recognize a directive identifier. The action taken depends upon 
the position of the erroneous identifier within the entry. 

• If the error occurs within a project number entry, the entire project 
number entry is disregarded. 

• If the error occurs in a directive that appears after a charge number but 
before the first project number, only the erroneous directive is disre­
garded. However. if the error occurs on the first PN directive, the 
entire project number entry is disregarded. 

• If the error occurs in any PN directive except the first one, it is treated 
as an error within the preceding project number entry. Both the project 
number entry for the erroneous project number and the preceding project 
number entry are disregarded. 

Informative message issued to the system dayfile statirig an error occurred 
while routing filenam. 

Parameters were included on the LIMITS statement. 

PROFILE detected nonnumeric data or numeric data exceeding the maximum limit 
for specified control value. The entire project number entry containing the 
erroneous directive is disregarded. 

Parameters specified on a PASSWOR control statement were in error. 

Error on PROFILE control statement. 

The format of the time parameter in a PURGALL request was incorrect. 

One or more files were not checkpointed because CHKPT detected address errors. 

Project file cannot be in fast-attach status on a reformat run. 

FET extends past job I s field length. 

One of the parameters in the FET is illegal or the FET is not long enough 
for the parameter. 

Indicates the number of files that have been dequeued on the specified device. 

nnnn 
dn 
xxxxxxx 

Number of files 
Device number 
Family name 

The file specified was empty. 

I 
I 

I 
I 

I 



.­
I 

b:f 
I .-

00 

0) 

o 
.;::. 
CAl 
en 
.;::. 
o 
o 
(1 

Message 

FILE ERROR lfn. 

FILE NAME ERROR. AT nnn. 

FILE NOT FOUND 

FILE NOT ON MASS STORAGE. 

FILE NOT OVERLAY FORMAT. 

FILE TOO LONG, AT nnn. 

FL BEYOND MFL. 

FL TOO SHORT FOR LIBRARY GENERATION. 

FL TOO SHORT FOR PROGRAM. 

FM NOT LEGAL FAMILY. 

pfn FOUN D, AT nnn. 

FORMAT ERROR ON CONTROL CARD. 

FORMAT ERROR ON OVERLAY DIRECTIVE 

FNT IS FULL. 

ILLEGAL ACCESS TO EXECUTE ONLY FILE. 

Routine 

CHKPT/ 
RESTART 

PFM 

LFM/SFM/QFM 

3AD 

LDR 

PFM 

IMA 

LlBGEN 

3AE 

PROFILE 

PFM 

TCS 

LDR 

QFM 

3AD 

Description 

An illegal address was detected on file !fn. 

File name contains illegal characters. 

Requested file was not found. 

The specified file does not reside on mass storage. 

The first record of the file was not an overlay. 

The local file specified for a SAVE, REPLACE, or APPEND command exceeds 
the length allowed, or the direct access file specified for an ATTACH in WRITE, 
MODIFY, or APPEND mode exceeds the direct access file length limit for which the 
user is validated. 

Field length requirements for the job step exceed the field length allowed. 
The user will have to increase the job step field length. 

Additional memory is required for LlBGEN. 

The user's field length is too short for the program. 

Illegal family name is specified with FM parameter. 

The specified permanent file was found. 

An error was detected in the format of the control statement. 

Illegal overlay directive parameter or no arguments found. 

The FNT filled during processing of the requeue function and all files could not be 
requeued. 

The specified file is an execute-only file. 

I 
I 

I 
I 

I 



en 
o 
~ 
CJ.:) 

CJ1 
~ 
o 
o 
() 

t­
I 

to 
I 
t­
eo 

Message 

ILLEGAL CHARACTER NUMBER. 

ILLEGAL CHARGE. 

ILLEGAL COMMON MEMORY MANAGER REQUEST. 

ILLEGAL CONTROL CARD. 

ILLEGAL COUNT. 

ILLEGAL DEVICE REQUEST, AT nnn. 

ILLEGAL DISPOSE CODE. 

ILLEGAL EQUIPMENT. 

ILLEGAL EXTENSION OF ftf AT nnn. 

ILLEGAL FILE NAME fff AT nnn. 

ILLEGAL FILE TYPE. 

pfn ILLEGAL FILE TYPE, AT nnn. 

Routine 

CHARGE 

1MA 

TCS/RESEX 

COPYBF/COPYBR/ 
COPYX 

PFM 

CIO 

CIO 

LFM/QFM 

PFM 

Description 

In a copy request, one of the following was detected. 

• Last character pOSition was less than first character position. 

• Last character position was greater than 150. 

• Either first character position or last character pOSition was unrecogniz­
able. 

The specified charge or project number does not exist or the project number was 
not assigned to this user. 

Memory request with reserved bits in the parameter block were set incorrectly. 

One of the following: 

• The control statement could not be identified. 

• An invalid parameter was specified or no terminator was detected. 

• The user attempted to pass too many parameters on the program call 
statement (such as LGO). 

• The user submitted a control statement considered illegal because of his 
validation [for example, if access option 1 (refer to LIMITS control 
statement) was not set and the user submitted a PASSWOR control state­
ment)]. 

• The user submitted a control statement considered illegal for a particular 
job t.·pe or file type (for example, the use of a FAMILY statement in a 
nonsystem origin job). 

Number of files in copy request was either illegal or zero. 

The device type (r parameter) specified on a request for an auxiliary device cannot 
be recognized or does not exist in the system. 

If the auxiliary device specified by the pn parameter is not the same type as the 
system default, the r parameter must be included; if not, the message is issued. 

The queue type (qi) specified on a DISPOSE control statement was unrecognizable. 

File is assigned to illegal equipment for the specific request (for example, the 
file specified in a COMMON request is not on mass storage). 

The user attempted to lengthen a file that could not be extended. 

The file name does not conform to established rules. 

I 

I 

I 

The specified file is of a type not allowed in the requested operation. For examPle.!' 
this message would be issued if the file name in a RELEASE request was not a 
queue type file (input, print, or punch) or if the user attempted to make a non-
local file a library file. 

The user attempted to DEFINE a local file residing on a device other than a 
permanent file device. 



I-' 
I 
td 
I 

t-:) 

o 

0) 

o 
~ 
t.I) 

en 
~ 
o 
o 

n 

Message 

ILLEGAL INPUT FILE. 

ILLEGAL 110 REQUEST ON FILE fff AT nnn. 

ILLEGAL LEVEL NUMBER. 

ILLEGAL LOAD ADDRESS. 

ILLEGAL MODIFICATION OF fff AT nnn. 

ILLEGAL ORIGIN. 

ILLEGAL ORIGIN SPECIFIED. 

ILLEGAL PROFILE INQUIRE. 

ILLEGAL RECORD TERMINATION. 

ILLEGAL SORT PARAMETER. 

ILLEGAL TERMINAL REQUEST. 

ILLEGAL USER ACCESS. 

ILLEGAL USER ACCESS. AT nnn. 

ILLEGAL USER CARD 

IMPROPER ACCESSIBILITY. 

IMPROPER VALiDATION 

INDEX ADDRESS OUT OF RANGE FOR fff AT nnn. 

INPUT FILE IN NORERUN STATUS. 

INPUT FILE IN RERUN STATUS. 

Routine 

PACK 

CIO 

LOR 

3AE 

CIO 

SFM/QFM 

PROFILE 

COPYX 

Description 

An attempt was made to pack a file that is assigned to a time-sharing terminal. 
For example. file INPUT for time-sharing origin jobs represents data typed at 
the terminal keyboard. and therefore. cannot be packed. 

CIO could not recognize the specified function code. or the code was not valid for 
the type of device to which the file was assigned. The system provides a dump on 
the FET on file OUTPUT. 

One of the following: 

• Assembly error 

• Level number greater than 778 

• First overlay not zero level (0.0) overlay 

The load address is less than 2. 

Either the user has attempted to shorten a modify-only file or the file cannot be 
modified at all. 

The origin type specified when releasing a local file to a queue was illegal. 

Origin word count error. 

The user is not allowed to access the control information for the charge number 
supplied. 

Illegal format on record terminator. 

The SORT control statement is in error. 

A command intended for time-sharing orlglO jobs . only (refer to Time-Sharing 
Commands. section 4) has been used in a non-time-sharing origin job. 

LFM/QFM/QFSP/RESEX User tried to perform an operation for which he was not validated. 

PFM 

CPM 

RESEX 

TCS 

CIO 

QFM 

QFM 

The user is not validated to create direct access or indirect access files or to 
access auxiliary devices. 

User number or password could not be validated. or a secondary user statement 
was encountered while secondary user statements were disabled. 

The user did not specify the correct file accessibility on the LABEL statement. or 
volume accessibility was set and a nonsystem origin user attempted to assign the 
tape as unlabeled. 

A validation program (one containing a VAL= entry point. such as that used for 
CHARGE and USER) is required before continuing. 

The random sector address for a random input I output request was equal to or greater 
than field length. 

Informative message. 

Informative message. 

I 

I 

I 



0') 
o 
M::o. 
t.I) 

CJl 
M::o. 
o 
o 
(') 

~ 

I 
td 
I 

\:I.:) 

~ 

Message 

INQUIRY COMPLETE. 

deckname·INVALID CS, 63 ASSUMED. 

INVALID USER ACCESS - CONTACT SITE OPR. 

I/O ON EXECUTE-ONLY FILE fff AT.nnn. 

I/O SEQUENCE ERROR. 

I/O SEQUENCE ERROR, AT nnn. 

I/O SEQUENCE ERROR ON FILE fff AT nnn. 

JOB ABORTED, fff AT nnn. 

JOB CARD ERROR. (20 characters) 

JOB EXECUTING. 

JOB IN INPUT QUEUE. 

JOB. IN NORERUN STATE ON RECOVERY. 

JOB IN OUTPUT QUEUE. 

JOB IN PUNCH QUEUE. 

JOB NOT FOUND. 

JOB STEP LIMIT. 

JOB REPRIEVED. 

LABEL CONTENT ERROR, fff AT nnn. 

LABEL MISSING, fff AT nnn. 

LABEL PARAMETER CONFLICT ON OPEN, fff AT nnn. 

Routine 

MOD VAL 

TCS 

CPM, lJA, lLS 

CIO 

QFM 

PFM 

ClO 

lMT 

3AA 

lAJ 

3AB 

SFP 

lMT 

lMT 

lMT 

Description 

The inquiry was successfully completed. 

Character set identification for deck deckname was not recognizable. OPLEDIT 
assumes 63-character set and uses it for the new program library if one is being 
created. 

The user number specified has exhausted its security count. The user 
number will be denied all access to the operating system until the security 
count has been reset by the operator. 

The user attempted to read, write, or position an execute-only file. RETURN is 
the only operation allowed for an execute-only file. 

I 

I 
Action was requested by a busy file. II 
A request was attempted on a local file that is currently active. This error can 
occur, for example, if. the user creates two FETs for the same file and issues a 
second request before the first is completed. 

The user attempted to perform more than one concurrent function on a single file. 

The job was aborted while a tape operation was pending. 

The job statement on the file being submitted is in error. The first 20 
characters of the statement in error follow the message. 

The job is either executing or has been rolled out for a higher priority job. 

Informative message. 

Identifies a job recovered on level 0 deadstart that was aborted because it was in 
a no-rerun mode (due to NORERUN control statement or macro). 

Informative message. 

Informative message. 

This message normally indicates that the job has been processed and no longer 
exists in the system. However, it may also be issued if the jobname was entered 
incorrectl V (misspelled). 

The monitor detected the expiration of the job step SRU limit. 

The job has been successfully reprieved. 

A block read was the correct size for a label but one or more required fields 
(such as the label name) Were incorrect. The programmer should use the 
LISTLB control statement to determine the cause of the problem. 

During a read operation, a required label was missing. The programmer should 
use the LISTLB control statement to determine the cause of the problem. 

Label fields did not match on open request. An additional message 

FIELD BEGINNING AT nnn NO COMPARE. 

specifying the decimal character position in HDRl of the first field that did not 
compare correctly is also issued. 

I 

I 

I 

, 



1-4 
I 

b:I 
I 

N 
N 

0) 
o 
.;:.. 
~ 
c.n 
.;:.. 
o 
o 

() 

LBC ARGUMENT ERROR. 

LBC FWA .GE. FL. 

LDR ERROR. 

LEVEL NUMBER MISSING 

LFM ILLEGAL REQUEST. 

Message 

LIBGEN ARGUMENT ERROR. 

LIBRARY GENERATION COMPLETE. 

LIBRARY GENERATION FILE EMPTY. 

LINE NUMBER LIMIT EXCEEDED. 

LOADER MISSING. 

LOC ARGUMENT ERROR. 

LOC RANGE ERROR. 

LOCAL FILE LIMIT, AT nnn. 

LOCAL FILE LIMIT, FILE fff AT nnn. 

LPxx, ••• 

LQxx, ••• 

LRxx, ••• 

Routine 

CPMEM 

CPMEM 

LDR 

LDR 

LFM 

LIBGEN 

LIBGEN 

LIBGEN 

RESEQ 

TCS 

CPMEM 

CPMEM 

PFM 

CIO 

Description 

The load address, addr, specified on the LBC control statement was nonnumeric. 

The load address specified on the LBC control statement was greater than or 
equal to the user's field length. 

Issued after one of the following errors.: 

OVERLAY NOT FOUND IN LIBRARY. 
ARG ERROR. 
FILE NOT OVERLAY FORMAT. 

One of the following: 

• LFM function detected was not recognized as a legal function. 

• An LFM function was issued without the auto recall bit set. 

An invalid parameter was used on the LIBGEN control statement. 

Informative message. 

The file to be processed is empty. 

The line number encountered or required during a resequencing (RESEQ) operation 
exceeded 99999. 

Either CALL or LDR= was not found in the library. 

The first word address or last word address parameter specified on the LOC 
control statement was nonnumeric. 

Either the first word address was greater than the last word address or the last 
word address was greater than the user's field length. 

The job's local file limit has been exceeded by an attempt to GET or ATTACH 
the file. 

The job's local file limit was exceeded in an attempt to define another fUe or 
attach an existing file to the job. 

Refer to the EQxx •••• series of corresponding messages for full descriptions 
of messages beginning with LPxx •••• 

Refer to the EQxx •••• series of corresponding messages for full descriptions 
of messages beginning with LQxx •••• 

Refer to the EQxx •••• series .of corresponding messages for full descriptions 
of messages beginning with LRxx •••• 

I 

I 



0) 

o 
~ 
c..:I 
CJ1 
~ 
o 
o 
() 

~ 
I 

b:I 
I 

t.:l 
~ 

Message 

MASS STORAGE DIRECTORY NOT WRITTEN. 

MASTER USER NUMBER REQUIRED. 

MDxx, Cyy, ec, ann, Stttt, FNqqqq-r. 

or 

MDxx, Cyy, ec, ann, Stttt, Ux Cxxxx Stttt. 

MEMORY OVERFLOW. 

MESSAGE LIMIT. 

MFL REQUEST TOO SMALL, MINIMUM USED. 

MIXED CHARACTER SET OPL. 

MONITOR CALL ERROR 

MT ••• 

Routine 

PROFILE 

6MD 

1AJ 

CONTROL 

1AJ 

Description 

On a GTR control statement, user requested that a mass storage directory record 
be written on a nonmass storage file. 

Master user number must be present in control point area (set via USER 
control statement) for a master user list and for an enquire from other than 
system origin or special accounting user. 

An error has been detected on mass storage device xx. The nature of the error 
is determined by examining each parameter in the message. 

xx EST ordinal of 841 disk 
yy Channel number 
ec Error code (one of the following): 

a 

nn 

tttt 

qqqq 
r 
Ux 
Cxxxx 
Sxxxx 

PE Parity error I checkword error 
AD Address error 
ST Device status error 
FN Function -reject for any device connected to data 

channel converter (6681) or function timed out with 

RS 
NR 

Type of 

R 
W 

no response 
Device reserved 
Device not ready 

operation (one of the following): 

Read 
Write 

Retry count; error is considered irrecoverable after the following 
number of retries. 

PE 10 
AD 10 
ST 64 
FN 10 
RS Indefini te 
NR Indefinite 

Device status; implies there was an incomplete transfer if status 
does not indicate an error 
Function rejected 
Data channel converter (6681) status, if present 
Physical unit } 
Upper address Physical address 
Lower address 

Insufficient storage was allowed for an OPLEDIT run. 

The number of messages issued by the job has exceeded the limit for which the 
user is validated. Message functions issued by compilers or applications programs 
that run at the user's job control pOint are also counted as user dayfile messages 
and thus are subject to the user's validated dayfile message limit. 

I 

MFL request was less than CONTROL's RFL= value. CONTROL's RFL= II 
value is used for this MFL request, thus allowing further MFL requests. 

Records of more than one character set were encountered on the old program 
library. 

RA+l call unrecognized. 

Refer to the EQ,... series of corresponding messages for full description of 
messages beginning with MT. 

I 



'""' I 
bj 
I 

N 
..J::o. 

0) 

o 
~ 
~ 
U1 
~ 
o 
o 

(') 

Message 

M. T. NOT AVAILABLE ON FILE fff AT nnn. 

MT /NT CONFLICT 

MULTI-FILE NAME NOT FOUND fff AT nnn. 

NO CONNECT TIME AVAILABLE. 

NO CPU TIME AVAILABLE. 

NO DIRECTIVES. 

NO EOR FOUND ON ZZZZZDF. 

NO INPUT FILE FOUND. 

NO LINE NUMBER ON SORT FILE. 

NO LINE TERMINATOR. 

NON-MA TClllNG CONVERSION 

NO READ FILE - Ifn. 

filename NOT DECLARED RANDOM. 

lfn NOT FOUND. 

NORERUN/RERUN IGNORED FROM TTY JOBS. 

xxx NOT IN PP LIB. 

Routine 

CIO 

RESEX 

CIO 

CHARGE 

CHARGE 

QFM 

SORT 

COPYC' 

SUBMIT 

LmEDIT 

RESTART 

QFM/CONTROL 

SFP 

Description 

The magnetic tape executive is not executing. 

Conflict exists between 7-track and 9-track tape descriptors. For example, a 
request for a 9-track tape specifies 200-bpi density. 

This message can also be issued if the device type specified in FET+l conflicts 
with the track type specified in FET+8, bit 56. If dt=MT and bit 56 is set, or if 
dt=NT and bit 56 is not set, the message is issued. 

User issued a ':'POSMF'~ on a nonexistent file on a multifile tape. 

The user has accumulated the maximum connect time allowed for the specified 
project number. 

The user has accumulated the maximum CPU time allowed for the specified project 
number. 

Directive file was empty. 

Illegal file format for ZZZZZDF. The FILE control statement (described in the 
Record Manager Reference Manual) is used to update the file information table 
(FIT) which is required for files the Record Manager accesses. The system uses 
information the programmer supplies on the FILE statement to prestore FIT in­
formation in file ZZZZZDF. 

No valid input file exists; functions cannot be performed. 

A line on the input file to a SORT request is miSSing a line number or a line 
exceeded the l50-character limit. 

A copy operation was attempted on a line longer than 150 characters which did 
not contain a line terminator. 

The conversion mode required for the tape is not the same as that specified on the 
control statement. This is only a warning message. 

The specified file cannot be found. 

An EOF was encountered on the nonrandom file, filename. 

RESTART was unable to retrieve a file named, but not included, on lfn. 

User entered NORERUN/RERUN from a terminal. The command is ignored. 

PP package xxx was not found in PP libraries. 

I 

I 

I 

I 



C) 

o 
~ 
C-" 
C1l 
~ 
o 
o 
() 

J-4 
I 
to 
I 

l\:) 

C1l 

Message 

xxx NOT IN PP LIB. - CALLED BY yyy. 

pfn NOT FOUND, AT nnn. 

lfn NOT ON MASS STORAGE, AT nnn. 

NT •••• 

NO WRITE ENABLE, ON iff AT nnn. 

OLDPL ERROR. 

OPERATOR DROP. 

OPLEDIT COMPLETE. 

OPLEDIT ERRORS. 

OUTPUT FILE LIMIT 

OUTPUT FILE LIMIT, FILE fff AT nnn. 

OVERLAPPING INSERT OR DELETE. 

OVERLAY FILE EMPTY. 

OVERLAY FILE NOT FOUND. 

Routine 

SFP 

PFM 

PFM 

IMT 

UPDATE 

3AB 

OPLEDIT 

OPLEDIT 

LFM 

CIO 

3AD 

3AD 

Description 

PP package xxx was not found in the PP libraries and was called by package yyy. 

One of the following: 

• The specified permanent file could not be found. 

• The specified user number could not be found. 

• The user is not allowed to access the specified file. 

• The user issued an indirect access file command on a direct access file. 

• The user issued a direct access file command on an indirect access file. 

If this message occurs in response to the SAVE request, the specified local file 
is not attached to the control point, is a direct access file, or is an execute-only 
file. 

The file to be saved is not on mass storage; the first track of the file is not 
recognizable. 

Refer to the EQ, ••• series of corresponding messages for full description of 
messages beginning with NT. 

Either the user attempted to write on a tape mounted with no write ring or no 
write was allowed because of additional constraints described in an additional 
message line. 

LABEL NOT 
EXPIRED. 

WRITE OVER 
LABEL ILLEGAL. 

200 BPI WRITE 
ILLEGAL. 

The user attempted to write over a label that had 
not yet expired. 

The user is not allowed to destroy the VOLI label. 

The tape unit (667 or 669) does not support 200-bpi 
density. 

Update program library format was bad. 

The job was dropped by the operator. 

Informative message indicating OPLEDIT completion. 

Errors were encountered while modifying a particular deck. 

The total number of files disposed to the output queue by the job has exceeded the 
limit for which the user is validated. 

During an attempt to close this file, the number of files disposed to output queues 
by the job has exceeded the limit for which the user is validated. 

Insertions and deletions affect, the same deck. 

No data appears in the requested file. 

The specified file was not available. 

I 

I 



.­
I 
tIl 
I 

t\:) 
CJ) 

CJ) 

o 
~ 
CA) 

c.n 
~ 
o 
o 

n 

Message 

OVERLAY NOT FOUND. 

OVERLAY NOT FOUND IN LIBRARY. 

PACK PARAMETER ERROR. 

PARITY ERROR - RESTARTED FROM kk. 

PBC ARGUMENT ERROR. 

PBC FWA .GT. LWA. 

PBC RANGE ERROR. 

PERMIT LIMIT EXCEEDED, AT nnn. 

PFM ABORTED, AT nnn. 

PFM ILLEGAL REQUEST, AT nnn. 

PF UTILITY ACTIVE, AT nnn. 

PL ERROR IN DECK dname. 

POSITION ERROR ON--xxxxxxx. 

POSITION LOST, fff AT nnn. 

PP CALL ERROR. 

PROFILE ABORTED. 

PROFILE FILE CREATE COMPLETE. 

PROFILE FILE DATA BASE ERROR. 

PROFILE FILE INQUIRY COMPLETE. 

PROFILE FILE LIST COMPLETE. 

PROFILE FILE REFORMAT COMPLETE. 

PROFILE FILE SOURCE COMPLETE. 

PROFILE FILE UPDATE COMPLETE. 

Routine 

3AD/3AE 

LDR 

PACK 

RESTART 

CPMEM 

CPMEM 

CPMEM 

PFM 

PFM 

PFM 

PFM 

MODIFY 

lMT 

3AB 

PROFILE 

PROFILE 

PROFILE 

PROFILE 

PROFILE 

PROFILE 

PROFILE 

PROFILE 

Description 

The specified overlay was not found. 

The specified overlay was not found in the system library. 

The PACK control statement contains an error. 

Because RESTART detected a parity error in attempting to restart from the 
specified checkpoint nn, the alternate checkpoint kk was used instead. 

Either the first word address or the last word address specified on a PBC control 
statement was nonnumeric. 

The first word address was greater than the last word address. 

The last word address parameter specified on a PBC statement was greater than 
or equal to the user's field length. 

Permit limit for private file has been exceeded. 

Error flag detected at PFM control point. 

One of the following: 

• Illegal command code passed to PFM 
• Illegal permit mode 0 r catalog type specified 
• CATLIST request has permit specified without a file name 
• PERMIT command attempted on a public file 

Because a permanent file utility is currently active, the operation was not 
attempted; the user should retry the operation. 

Error encountered in processing deck dname. 

File xxxxxxx was not repositioned after being checltpointed because CHKPT de­
tected an address error. 

I 

During write error recovery, the system could not find the last good block of data, II 
making it impossible to successfully perform error recovery. 

The monitor detected an error in a CPU reQuest for PP action. 

Error flag is set at control point. 

Creation run is complete. 

Project file does not contain level 0 and level 1 blocks. 

Enquire run is complete. 

List run is complete. 

Reformat run is complete. 

Source run is complete. 

Update run is complete. 



0) 

o 
~ 
CJJ 
CJ1 
~ 
o 
o 

n 

..­
I 

td 
I 

t..:l 
-.:J 

PROGRAM FILE EMPTY. 

PROGRAM LIBRARY EMPTY. 

PROG RAM NOT FOUND. 

Message 

PROGRAM NOT ON MASS STORAGE. 

PROGRAM STOP AT xxxxxx. 

PROGRAM TOO LONG 

PROTECTED FILE 

PRU LIMIT, AT nnn. 

PRU LIMIT, FILE fff AT nnn. 

PRUS REQUESTED UNAVAILABLE. 

PRUS REQUESTED NOT AVAILABLE, AT nnn. 

QFM ARGUMENT ERROR. 

QFM EOI BAD ON ATTACHED FILE. 

QFM FILE ALREADY ATTACHED. 

QFM FILE EMPTY. 

QFM - FILE IGNORED filename. 

QFM FILE NAME ERROR. 

QFM FILE NOT FOUND. 

QFM FILE NOT ON MASS STORAGE. 

QFM ILLEGAL EQUIPMENT. 

QFM ILLEGAL FILE TYPE. 

QFM ILLEGAL ID CODE. 

QFM ILLEGAL ORIGIN TYPE. 

Routine 

TCS 

EXU 

EXU 

3AB 

EXU 

PFM 

CIO 

3PF 

PFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

QFM 

Description 

A load of an empty data file was attempted. 

The old program library contained no data. 

The program to be loaded was not found on the specified library file. 

The program does not reside on a mass storage device. 

The monitor detected a program stop instruction at address xxxxxx. 

The program does not fit in the available storage. 

The user has attempted to release a locked file. 

The job's mass storage PRU limit was exceeded during preparation of a local 
copy of an indirect access file. 

The job's mass storage PRU limit was exceeded during an attempt to write or 
extend this file. 
The number of PRUs requested is not available. 

The number of PRUs specified via the S parameter on the DEFINE request is not 
available. 

One of the following: 

• Address is outside field length 
• Address is equal to 1 
• Origin code is out of range 

.• ID code is out of range 

The EOI sector cannot be found on the specified file. 

The specified file is already attached to the control pOint. 

The submitted file has not been used. 

The file was ignored because it had an illegal origin or type code. It could 
indicate a bad IQFT file. 

The lfn specified does not check as a valid file name. 

The submitted file could not be found. 

The submitted file does not reside on mass storage. 

The equipment specified in FET+7 either is not mass storage or is not in the 
range of the EST. 

The submitted file is not a local file. 

The ID code is out of range. 

The origin type for the submitted file is not batch or Export/Import • 

I 



~ 
I 
bj 
I 

t...:I 
co 

0) 
o 
~ 
c,) 

en 
~ 
o 
o 
() 

QFM ILLEGAL REQUEST. 

QFM INTERLOCK ERROR. 

QFM TRACK MISMATCH. 

Message 

QFM UNABLE TO INTERLOCK MS'T. 

QUEUE FILE UTILITY COMPLETE. 

QUEUED FILES LOST. 

RA. SSC OUT OF RANGE. 

RANDOM ADDRESS NOT' ON FILE fff AT nnn. 

READ AFTER WRITE. fff AT nnn. 

READ FILE BUSY - lfn 

nnnnn RECORDS CONVERTED. 

n RECORD(S) NOT REPLACED. 

RECORD SIZE EXCEEDS 500. 

RECORD TOO LONG. 

REPRIEVE IMPOSSIBLE - BAD CHECKSUM 

REQUEST UNDEFINED ON DEVlCE fff AT nnn. 

REQUESTED FL BEYOND MFL 

RERUN NOT POSSIBLE. 

RESEX DETECTED ERROR. 

Routine 

QFM 

QFM 

QFM 

QFM 

QFSP 

QREC 

IMA 

CIO 

IMT 

SUBMIT 

LmEDIT 

CPMEM 

SFP 

CIO 

lMA 

IDS 

LFM 

Description 

One of the following: 

• Specified function illegal or undefined 
• Job did not have SSJ= entry point 
• Auto recall bit was not set 

Track interlock could not be set due to a conflict. 

The file about to be purged is not the same file that was previously attached. 
The first track in the FST does not equal the one from the DULL word. 

Informative message. 

Informative message. 

Files which process error conditions were not requeued. This error should never 
occur but may if QREC was aborted and could not modify its files correctly. A 
level 0 deadstart will recover the queues. 

The subsystem recelvmg the buffer pointer (RA. SSC) word has one or more 
fields outside the subsystem' field length. 

The random address specified was not within the bounds of the file. The system 
provides a dump of the FET on file OUTPUT. 

The user attempted to read a tape on which the last operation was a write. 

The read file is found to be busy (direct access file only). 

Informative message indicating number of records (nnnnn) converted from one 
character set to another. 

Informative message; the job is aborted unless the D option was specified. 

The maximum line length for a record to be converted (500 characters) was 
exceeded. 

The record is too long for available memory. Available memory is filled and the 
excess data is skipped. In response to a WBR request. the record length 
parameter was greater than or equal to the user's field length. 

Postrecovery checksum does not match prerecovery checksum. 

The specified function cannot be performed on the device on which the file resides. 
The system provides a dump on the FET on file OUTPUT. 

The job's memory request has exceeded the maximum field length for 
a job step. 

Operator attempted to rerun a job that is in no-rerun mode. 

The resource executive (RESEX) detected an error. 

I 

I 
I 

I 

I 



0) 

o 
~ 
~ 
en 
~ 
o 
o 
(') 

t-4 
I 
to 
I 

l\:I 
c:c 

• 

Message 

RESEX FAILURE. AT nnn. 

RESOURCE DEMAND ERROR. 

RESOURCE TYPE ERROR. 

jobname RESTARTED FROM yy / mm/ ddt hh. mm. SSt 

RFL BEYOND MFL. 

ROLLIN FILE BAD. 

ROUTE CONTROL CARD ERROR. 

ROUTE ':'DC* INCOMPATIBLE WITH *EC*. 

ROUTE ILLEGAL KEYWORD. 

ROUTE ILLEGAL *OT~' PARAMETER. 

ROUTE ;~OT~' NOT ALLOWED. 

ROUTE ~'REP~( GT 31. DEFAULT USED. 

ROUTE ~'TID'~ AND ~(FM/uN~' CONFLICT. 

ROUTE t,'TID/FM/UN~( and *ID~' CONFLICT. 

ROUTE ':'FID* IGNORED. 
ROUTE ':'PRI':' IGNORED. 
ROUTE t,<SP.< IGNORED. 
ROUTE *TID=xx - VALUE IGNORED.~' 

ROUTE COMPLETE. 
ROUTE COMPLETE. JOB NAME IS FILnam. 

Routine 

PFM 

RESEX 

RESEX 

RESTART 

CPM 

lIU 

ROUTE 

ROUTE 

ROUTE 

ROUTE 

ROUTE 

ROUTE 

ROUTE 

ROUTE 

ROUTE 
ROUTE 
ROUTE 
ROUTE 

Description 

The resource executive (RESEX) has detected a fatal error. 

The user attempted to decrease the number of scheduled units to less than the 
number of currently assigned units or increase the number of scheduled units 
to a point where a deadlock would occur. 

The user specified an illegal resource type. 

The checkpointed job identified by jobname was restarted from the checkpoint 
taken on the specified data and time. This message is issued whenever a check­
point job is restarted. 

The RFL request is greater than the maximum field length for a job step. 

An illegal format was detected in the roll-in file. 

Format of the control statement is incorrect. 

The user specified a DC/EC combination that is not legal. If the DC 
parameter implies a print file. the EC parameter must be for print files. 

Control statement contains an illegal keyword. 

The origin type specified by the OT parameter is illegal. 

The user program is not system origin. Only system origin jobs can use 
the OT parameter. 

The repeat count specified was greater than 31; it has been set to O. This 
condition will not abort the program. 

The TID parameter was specified with either the FM or UN parameter. 
Either one of these parameters is mutually exclusive with TID. 

The ID parameter was specified with the TID or FM or UN parameter. 

Informative message listed for NOS/BE compatibility. 
Informative message listed for NOS/BE compatibility. 
Informative message listed for NOS/BE compatibility. 
Informative message listed for NOS/BE compatibility. 

Issued when route is complete. 
Issued when route is complete. 



I-l 
I 

bj 
I 
~ 
o 

0) 

o 
~ 
~ 
<:Jl 
~ 
o 
o 

() 

Message 

SECURE MEMORY, DUMP DISABLED. 

SFM ARGUMENT ERROR. 

SFM DAYFILE BUSY. 

SFM ILLEGAL DAYFILE CODE. 

SFM ILLEGAL REQUEST. 

SFM TRACK INTERLOCK ERROR. 

SL NOT VALIDATED. 

SMF UNABLE TO INTERLOCK DEVICE. 

SFP CALL ERROR. 

SFP /RPU UNABLE TO RESET. NOT REPRIEVED. 

SFP. xxx ILLEGAL ORIGIN CODE. 

SFP/xxx PARAMETER ERROR. 

SPeW CALL ERROR. 

SPECIAL REQUEST PROCESSING ERROR. 

STATUS ERROR, fff AT nnn. 

Routine 

1AJ 

SFM 

SFM 

SFM 

SFM 

SFM 

CPM 

SFM 

SFP 

SFP 

SFP 

SFP 

1AJ 

SFP 

IMT 

Description 

An attempt was made to dump memory protected by the system. 

The argument passed to SFM was out of bounds or the FET specified did not 
specify a buffer of at least 100S words. 

Action was requested on a busy dayfile. 

The dayfile code passed in the FET was not within range. 

The requested function or origin type specified in the function call was not 
recognizable or SFM request was made and the auto recall bit was not set. 

Track was either interlocked when it should not have been or not interlocked when 
it should have been. 

The SRU limit requested exceeds that for which the user is validated. 

SFM request was not performed because the selected device could not be inter­
locked. 

SFP was not loaded by default. 

An attempt was made to reset when the job had not been reprieved. 

Function illegal for user's job origin. 

Parameter address outside FL. 

A DMP= type call was made, and the program called is either not in the CLG 
or does not have a DMP= entry point defined. 

The SPCW word was busy. 

An irrecoverable error was encountered. A second message line describes the 
error in more detail. 

CRC ERROR. 
DATA TIMING 
PROBLEMS. 
FILL STATUS 
ILLEGAL. 

FLAG BIT ERROR. 

MEMORY PARITY 
ERROR. 
MULTI-TRACK 
PHASE ERROR. 
PARITY ERROR. 
UNIT HAS MOTION 
PROBLEMS. 

An error was detected in cyclic redundancy character. 
Hardware malfunctions. Another unit should be tried. 

The system has detected an odd number of frame. a 
condition which is illegal for the data format of the 
tape being read. 
The tape being read with ASCII conversion contains 
characters not included in the 12S-character set. 
A parity error was detected in the conversion memory 
of the tape controller. 
Multiple tracks were found to be in error at 1800 cpi. 
making recovery impossible. 
The tape could not be read/written correctly. 
The tape unit cannot properly write the tape. The 
user should resubmit his job. using a different tape 
unit. 

I 

I 

I 



0) 

o 
~ 
t.<l 
c:.n 
~ 
o 
o 
(') 

..... 
I 

to 
I 

t.<l ..... 

• 

SUBSYSTEM ABORTED. 

SYSTEM ABORT. 

SYSTEM SECTUR ERROR. 

TABLE OVERFLOW. 
JOB ABORTED. 

Message 

TAPE BLOCK DEFINITION ERROR. 

TAPE FORMAT PROBABLY WRONG. 

TIME LIMIT. 

TL NOT V ALIDA TE D. 

Routine 

3AB/IAJ 

lAJ 

QFM 

RESEX 

IMT 

3AB 

ACCFAM 

CPM 

POSTAMBLE 
ERROR. 
SINGLE FRAME 
ERROR. 
LRC ERROR. 

ILLEGAL 
CHARACTER. 

IBG NOT FOUND -
POSITION 
UNCERTAIN. 

Description 

A missing or defective postamble was detected at 
1600 cps. 
A frame (NRZI only) containing all zeros was read; 
data will be at least one frame short. 
The longitudinal redundancy check character was 
read incorrectly (9-track NRZI). 
Illegal character read from 9-track tape. If a 1 is 
detected in bit 6 of a translated character. the 
character is illegal. 
False read end-of-operation occurred. and the IBG 
could not be located within 100 inches. Further 
positioning is uncertain. 

The user job was connected (either long term connection or wait response set) to 
a subsystem which aborted. 

Possible errors include detection of a bad rollout file by lRI. an unrecognizable 
error flag, an SSJ: block outside a field length, or an invalid USER statement. 

An error occurred while reading the system sector. 

Resubmit job with increased field length. 

The user attempted to define data block size via the FC or C keyword or noise 
block size via the NS keyword in such a manner that the system is unable to 
correctly define the size of the data block. The omission of the FC or C param­
eter on a control statement where it is required also causes this message to be 
issued. 

This message is issued in addition to one of the following messages. 

BLOCK SEQUENCE ERROR, fff AT nnn. 
BLOCK TOO LARGE, fff AT nnn. 
WRONG PARITY, fff AT nnn. 

if one of these error conditions occurs on the first block. 

The monitor detected that the time limi t for the job step has expired. 

The time limits specified on the job statement exceed that for which the user is 
validated. 

The time limit requested exceeds that for which the user is validated • 



..... 
I 

1lI 
I 

Col) 
l.\:) 

0) 
o 
~ 
Col) 

c.n 
~ 
o 
o 

n 

Message 

TOO MANY ARGUMENTS. 

TOO MANY ARGUMENTS. 

TOO MANY DEFERRED BATCH JOBS. 

TRACK ALREADY ASSIGNED 

TRACK LIMIT. FILE fff AT nnn. 

UNABLE TO READ IQFT FILE. 

UNIDENTIFIED PROG RAM FORMAT. 

UNRECOVERABLE MS ERROR. 

UPMOD COMPLETE. 

VERIFY ERRORS. 

WBR ARGUMENT ERROR. 

WRITE ON READ-ONLY FILE fff AT nnn. 

WRITE OVER LABEL ILLEGAL ON fffAT nnn. 

WRONG PARITY. fff AT nnn. 

25555 FIELD LENGTH INCREASE. 

Routine 

TCS 

COPYB 

QFM 

QFM 

CIO 

IMS/MSI 

3AE 

QFM 

UPMOD 

VERIFY 

CPMEM 

CIO 

lMT 

lMT 

LIB EDIT 

Description 

The number of arguments on the control statement exceeds that allowed by the 
program. 

More arguments were specified on a copy request than are allowed on that 
statement. 

The user is not validated for this function or he has more jobs in the system 
than he is allowed. (All jobs in batch queues and Ell queues are counted.) 
The count is ignored if the job is of system origin or the user is validated for 
system privileges and DEBUG mode is set by the operator. 

The track byte for the IQFT file in the DULL word in the MST is already assigned. 

The device on which the file resides is full. 

An attempt to initialize inactive queues failed because the IQFT file could not be 
read. 

The file the user requested to be loaded was not in a recognizable format. 

An irrecoverable mass storage error was detected during an 1/0 operation. 

Informative message indicating UPMOD completion. 

Errors were encountered during VERIFY routine. 

The record length parameter specified on a WBR statement was nonnumeric. 

Either the user attempted to write on a file with write interlock or the direct 
access file was not attached in WRITE mode. 

The user is not allowed to destroy the VOLl label. 

A 7-track tape is being read in opposite parity from which it was written. 

The job field length was too small for LIBEDIT. Field length was increased 
to 26K. 

I 

I 



LFM ERROR CODES 

The following octal error codes are returned to the error code field of the FET word I 
0, bits 10 through 13 in response to LFM requests. 

Error Codes 

1 

2 

3 

4 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

60435400 C 

Description 

File not found 

File name error 

Illegal file type 

File empty 

Duplicate common file name 

Illegal equipment 

Equipment not available 

Duplicate file name 

Illegal user access 

Illegal user number 

Illegal ID code 

Resource executive (RESEX) detected an error 

1/0 sequence error 

Output file limit 

Local file limit 

No mass storage available 

Illegal file mode 

FET too short 

GETFNT table too large 

Illegal change in file I origin type 

• 

I-B-33 



PFM ERROR CODES 

The following error codes are returned to the error code field of the FET word 0, bits 
I .17 through 10 in response to PFM requests. 

Error Codes 

1 

1-B-34 

2 

3 

4 

5 

6 

7 

10 

11 

Description 

The specified direct access file is attached in the opposite 
mode. 

One of the following: 

• The specified permanent file could not be found. 

• The specified account number could not be found. 

• The user is not allowed to access the specified file. 

• The user issued an indirect access file command on 
a direct access file. 

• The user issued a direct access file command on an 
indirect access file. 

If this message occurs in response to the SAVE macro, the 
specified local file is not attached to the control point, is a 
direct access file, or is an execute-only file. 

The file specified on a SAVE macro contains no data. 

The file to be saved is not on mass storage; the first track 
of the file is not recognizable. 

The user has already saved or defined a file with the name 
specified. 

The user attempted to define a file that was not a local file. 

File name contains illegal characters. 

The user is not validated to create direct access or indirect 
access files or to access auxiliary devices. 

The device type (r parameter) specified on a request for an 
auxiliary device cannot be recognized or does not exist in 
the system. 

If the auxiliary device specified by the pn parameter is not 
the same type as' the system default, the r parameter must 
be included; if not~ this message is issued. 

60435400 C 



Error Codes 

12 

13 

14 

15 

16 

17 

20 

21 

60435400 C 

Description 

The local file specified for a SAVE, REPLACE, or APPEND 
command exceeds the length allowed, or the direct access 
file specified for an ATTACH in WRITE, MODIFY, or 
A PPEND mode exceeds the direct access file length limit 
for which the user is validated. 

One of the following: 

• Illegal command code passed to PFM 

• Illegal permit mode or catalog type specified 

• CATLIST request has permit specified without a file 
name 

• PERMIT command attempted on a library file 

Access to the permanent file device requested is not possible. 

The device on which the file resides may not contain direct 
access files because: 

1. The device is not specified as a direct access de­
vice in the catalog descriptor table. 

2. The device is not specified as ON and initialized 
in the catalog descriptor table. 

3. The device is a dedicated indirect access perma­
nent file device. 

Because a permanent file utility is currently active, the 
operation was not attempted; the user should retry the oper­
ation. 

An error occurred in a read operation during a file trans­
fer. 

The number of files in the user's catalog exceeds the limit 
(refer to LIMITS control statement, section 6). 

The cumulative size of the indirect access files in the user's 
catalog exceeds the limit (refer to LIMITS control statement, 
section 6). 

1-B-35 I 



I 

Error Codes 

22 

23 

24 

25 

26 

30 

31 

32 

33 

34 

35 

36 

37 

Description 

The number of PRUss pecified via the S parameter on the 
DEFINE macro is not available. 

A request was attempted on a local file that is currently 
active. This error can occur, for example, if the user 
creates two FETs for the same file and issues a second 
request before the first is completed. 

The job's local file limit has been exceeded by an attempt 
to GET or ATTACH the file. 

The job's mass storage PRU limit has been exceeded during 
preparation of a local copy of an indirect access file. 

Permit limit has been exceeded for a private file. 

The resource executive has detected a fatal error. 

No allocatable tracks remain on equipment xx, where xx is 
the EST ordinal. 

The length of a file does not equal the catalog length; the 
action taken depends on the type of command issued. 

Command 

GET 

SAVE 

REPLACE 

Action 

A local file is created with length 
being the actual length retrieved. 

If file length is longer than TRT 
specification, file is truncated. 

Same as for SAVE. 

Permit random address error. 

The system sector data for the file does not match the 
catalog data. 

The same file was found twice during a catalog search. 
This error can occur for APPEND or REPLACE commands 
after a file is found and purged and the catalog search is 
continued. 

Error flag detected at PFM control point. 

An error was encountered in reading a portion of the 
permanent file catalog or permit information. 

Table 1-B-1 specifies the action PFM takes if it detects an error while reading mass 
storage. The symbols used· in the table designate the type of response PFM makes 
and are defined as follows: 

Symbol Description Code 

DTE DATA TRANSFER ERROR. 17 

EOI Processing continues as if an EOI was encountered. 

MSE MASS STORAGE ERROR. 37 

FNF pfn NOT FOUND. 2 

DAF DIRECT ACCESS FILE ERROR. 34 

FLE FILE LENGTH ERROR. 32 

1-B-36 60435400 C 



-
0) 
o 
~ 
CoIl 
CJl 
~ 
o 
o 
(') 

.... 
I 

Il1 
I 

C.Il 
-.J 

TABLE I-B-l. PERMANENT FILE ERROR CONDITIONS 

Command 

Activity SAVE GET PURGE CATLIST PERMIT REPLACE APPEND DEFINE ATTACH 

Device-to-device· DTE DTE DTE DTE 
transfer (valid 
sector) 

Device-to-device EDIt EDIt EDIt EDIt 
transfer (no valid 
sector) 

Reading PF catalog MSE FNF FNF EOI FNF MSE FNFt t MSE FNF 
I 

Device-to-device DTE 
transfer of original 
file (valid sector) I 

I 

Device-to-device EDIt I 

transfer of original I 

file (no valid sector) 
I 

Reading a sys tern DAF DAF DAF I 

sector I 

I 

Reading permit FNF FNF EOr FNF FNF FNF I 

informa tion 
I 

Reading permit MSE MSE MSE MSE MSE I 

I 

informa tion for 
update I 

I 

I 

I 

t Unless the error occurred while the last sector was being read, a FILE LENGTH ERROR message is issued. I 

t t If the error occurred on a: reentrant search of the PF catalog, a MASS STORAGE ERROR message is issued. I 

L-- I 





LIBEDIT c 

LIBEDIT is a binary record management program that is used to: 

• Create and maintain a program library file 

• Copy records to a program library file 

• Delete records from a program library file 

• Replace records on a program library file 

Binary logical records are the basic unit manipulated. LIBEDIT manipulates the records 
of the old program library file and optional replacement files. Records for replacement I 
can be on one or more secondary files. Replacement is the implicit mode of a LIBEDIT 
run. Additions and no-replacements must be explicitly requested. 

LIBEDIT manipulates the follow ing record types. 

.. Relocatable central processor program (REL) 

• Central processor overlay (OVL) 

• Multiple entry point overlay (ABS) 

• 6000 peripheral processor program (Pp) 

• 7600 peripheral processor program (PPU) 

• Modify old program library deck (OPL) 

• Modify old program library common deck (OPLC) 

• 
• 

• 

Modify old program library directory (OPLD) 

User library programs (ULIB) 

Unrecognizable as a pl'ogram (TEXT) 

CAP capsule loader record (Supported by CDC CYBER I.loader 1. 3) 

Formats are further described in appendix G, volume 2. 

LIBEDIT executes in two phases. During the first phase, it reads directives and re­
placement records. It groups directives by type and file and groups corrections when 
several insertions take place relative to the same record. 

I 
I 

During the second phase, LIBEDIT performs modifications and generates the new program I 
library. If LIBEDIT cannot process the specified combination of directives, and the D 
option (refer to the following control statement description) was not specified, LIBEDIT 
lists the conflicting directives (or a simulated form of the directives), issues an error 
message, and aborts the job. If the D option was specified, LIBEDIT continues processing 
the directives. 

60435400 C 1-C-1 



CONTROL STATEMENT FORMAT 

The following control statements call the LIBEDIT program to be loaded and executed. 
Parameters specify mode and files. 

The optional parameters, Pi, can be in any order within the parentheses. Generally, a 
parameter can be omitted or can be in one of the following forms. 

a (C, R, and V only) 

a=lfn 

a=O 

a is one of the following options: I, P, N, L, LO, B, C, R, and V. Un is the 1- to 
7-alphanumeric character file name. LIBEDIT accepts only one instance of any param­
eter. 

Option 

I=lfn 
1=0 
I omitted 

P=lfn 
P=O 
P omitted 

N=lfn 
N=O 
N omitted 

L=1 

L=O 
L omitted 

LO=lfn 
LO omitted 

B=Un 
B=O 
B omitted 

c 
C omitted 

R 
R omitted 

V 
V omitted 

D 
D omitted 

l-C-2 

Description 

Directives comprise the next record on file lfn 
No dire ctive input 
Directives are on file INPUT 

File Un contains the old program library 
No old program library file 
Old program library is on file OLD 

New program library will be written on file Un 
Illegal; no error message is issued, if used 
New program library will be written on file NEW 

I NOTE I 
The new program library is evicted 
prior to processing (refer to EVICT 
statement, section 7). 

Short correction listing (includes only directives, modifications, 
and errors) on the file specified by the LO parameter 
No output is listed 
Full correction listing is written on the file specified by the LO 
parameter 

List output on file Un 
List output on file OUTPUT 

Use file Un for the replacement file 
Do not use a default replacement file 
Use file LGO as the default replacement file 

Copy the new library file over the old library file after processing 
Do not copy the new library file over the old library file after 
processing 

Do not rewind library files after processing 
Rewind old and new library files after LIBEDIT and VFYLIB 
processing 

Call VFYLIB after LIBEDIT processing 
Do not call VFYLIB to verify libraries after LIBEDIT processing 

Ignore errors and continue 
Do not ignore errors; abort job 

60435400 B 



LlBEDIT DIRECTIVES 

Directives comprise a program record on file INPUT or on the file specified through the 
I mode parameter on the LIBEDIT control statement. DIrectives control the record manage­
ment process. A directive begins with an asterisk in column 1 followed immediately by the 
statement identifier. The statement identifier is delimited by a comma and / or one or more 
spaces. Parameters are delimited by -, a blank, an end-of-line, or a comma. 

Statement parameters have no en1bedded blanks. If a directive does not begin with an 
asterisk and a statement identifier, LIBEDIT assun1es the operation is a continuation of the 
last directive operation. If the statement was not preceded by a directive, the operation is 
assumed to be: 

~:'BEFORE ~:', gid l' gid2 , ... , gid
n

• 

Note, however, that gid entries cannot be split between statements. For example, the state­
ments 

':'B, OVL/ PI, OVL/ P2, •.• , OVL/ P 
N 

do not constitute a valid directive. The last entry would not be processed as OVL/PN. 
On the other hand, the statements 

':'B, OVL/Pl, OVL/P2 
OVL/P3 
OVL/PN 
o 
TEXT ITI 

do constitute a valid directive and would be processed in the same manner as: 

~:'B, OVL/pl, OVL/p2, OVL/P3, OVL/pN, 0, TEXT ITI 

Directives are not required. If they are not provided, LIBEDIT replaces the records 
of the old program library file that have the same name and type as the records on the 
correction file, and LIBEDIT writes the new library. 

Parameters common to many of the correction directives are the reference record 
identifier (rid) and the group record identifier (gid). 

rid 

gid 

60435400 A 

The rid parameter specifies a reference point for a correction. It can 
be in one of the following forms. 

type/rname 

rname 

Reference record is of the specified type 

Reference record is the implied type (refer to type) 

Reference point is an end-of-file mark (~:'BEFORE 
card only) 

One or more gid parameters on a directive indicate records or groups 
of records to be inserted, deleted, or replaced. A gid can be in one 
of the following forms. 

type/rname 

type 1 I rname 1 -
type2 I rname2 

Single record of the specified type 

Group of records beginning with rname of type 1 and 
ending with rname2 of type2. Types are specified 
or implied. 

rname Record identifier can be one of the following. 

rname , Name of record 

l-C-3 



o 

If us ed for rname on an 
INSERT, AFTER,l BEFORE, 
or IGNORE, an ':< indicates 
that all records on the library 
of the specified or implied 
type are to be inserted or 
ignored. 

If used for rname2 on INSERT, 
AFTER, BEFORE, or IGNORE, 
an ~< indicates that all records 
of typel, starting with rnamel' 
are to be inserted or ignored. 

Indicates that a zero-length 
record is to be inserted. 

type Identifies the type of the named record. When 
type is absent from a rid or gid parameter, 
LIBEDIT uses the type most recently speci­
fied on a directive. For valid types, refer 
to the description of the TYPE directive. 

LIB EDIT recognizes the following directives. 

Directive 

>'r:ADD 

*BUILD 

*COMMENT 

*COPY 

'~DATE 

>'r:DE LETE or ':<D 

*FILE 

'~IGNORE 

'~INSERT or *1 
*AFTER or >'.<A or 

':<NOREP 

*RENAME 

>'.<REPLACE 

*REWIND 

*TYPE or NAME 

l-C-4 

Definition 

Adds records at end of library. 

Inserts records before the named record. 

Builds an index at end of new file. 

Adds comment to prefix table. 

Copies new file to old at end of editing. 

Adds date and comment to prefix table. 

Deletes specified records. 

Declares additional correction file. 

Ignores records when reading correction file. 

Inserts records from correction file after named record. 

Does not automatically replace records from named file. 

Renames record. 

Replaces records on old file with records from correction file. 
Optionally declares current correction file as no-replace. 

Designates file to be rewound before and after editing. 

Sets type of library to be used for default. 

60435400 A 



FILE 

The directive format is: 

):cFILElfn 

lfn Name of the additional replacement file; subject to operating system 
restrictions on file names. If lfn is an );', LIB EDIT uses the re­
placement file specified by the LIBEDIT statement or the default 
file (LGO), if none is specified. 

The FILE directive declares a secondary file as an additional file that contains replace­
ment records. LIBEDIT directives following a FILE statement specify records on the 
declared replacement file. 

REWIND 

The directive format is: 

~cREWIND lfn 

lfn Name of file to be rewound 

LIB EDIT rewinds the specified file before and after editing. 

TYPE OR NAME 

The formats for the directives are: 

):cTYPE type 

*NAME type 

type Specifies default type of internal record format: 

ABS 

CAP 

OPL 

OPLC 

OPLD 

OVL 

PP 

PPU 

REL 

TEXT 

ULIB 

Multiple entry point overlay 

Capsule loader record (Supported by CDC CYBER Loader 1. 3) 

Modify old program library deck 

Modify old program library common deck 

Modify old program library directory 

CPU overlay 

6000 series format peripheral processor unit program 

7600 format peripheral processor unit program 

Relocatable CPU program 

Unrecognizable as a program 

User library program;. begins with a ULIB type record 
and terminates with OPLD type record 

Any explicit use of a type or a rid or gid parameter resets the default value to the new 
type. 

With the TYPE (or NA ME) directive, the user specifies the type of record to which sub­
sequent LIBEDIT directives refer. A type specification is in effect until the next TYPE 
(or NAME) directive is supplied or until a type is explicitly declared on another directive. 
If no TYPE or NAME directive is supplied or no explicit type is used, the type is TEXT. 

60435400 C l-C-5 



I 

I 

For example: 

is equivalent to 

):~DELETE REL/HENRY -REL/IDA 

):~INSERT REL/GEORGE,REL/MARY 

INSERT OR AFTER 

The formats for the directives are: 

~~INSERT rid, gid
1

, gid
2

, ••• ,gid
n 

or *1 rid, gid
1

, gid2, .•• ,gid
n 

*AFTER rid, gid
1

, gid2, ••• , gidn or *A rid, gid1, gid2~ ••• , gidn 

rid Id.entifies the record on the old library file after which the 
specified records or groups of records are to be inserted 

Identifies the records or groups of records from the replacement 
file to be inserted after rid 

An INSERT or AFTER directive directs LIBEDIT to insert records or groups of records 
from the current replacement file after the specified old library record for transcription 
to the new library file. The current replacement file is the most recent file specified 
by a FILE directive or by the LIBEDIT control statement. Insertion of records causes 
automatic deletion of the old !ecords having the same names and types from the old 
library file. 

An example of the use of this directive is: 

):CINSERT OPL/LEA, TEXT/OSCAR-;'< 

These statements direct LIBEDIT to insert, after the OPL deck LEA on the old library 
file, all TEXT records from OSCAR until an end-of-file mark is encountered. If any . 
of these TEXT records have the same name as a TEXT record that is already on the 
old library file, the old TEXT record is not transcribed to the new library file. 

l-C-6 60435400 C 



BEFORE 

The directive formats are: 

rid 

or ':<B rid, gid l' gid2 , ... , gidn 

Identifies the record on the old library file before which the 
specified records are to be inserted. On the form omitting the 
directive name, rid is assumed to be ':< (that is, insert before 
end-of-file). 

Identifies records or groups of records from the replacement 
file to be inserted before rid. 

A BEFORE directive causes LIBEDIT to insert records or groups of records from the 
current replacement file before the specified old library record for transcription to the 
new library file. The current replacement file is the most recent replacement file 
specified by a FILE directive or by the LIBEDIT control statement. Insertion of records 
causes automatic deletion of the old records having the same names and types from 
the old library file. 

DELETE 

The directive formats are: 

or 

gid. 
1 

Identifies records or groups of records to be deleted from the 
old library file. An asterisk cannot be used. 

The DELETE directive causes LIBEDIT to suppress copying of the specified records 
from the old library file to the new library file. 

An example of the use of this directive is: 

':<DELETE PPU /LAD-REL/RUN 

This statement directs LIBEDIT to delete records starting with 7600 PPU program LAD 
through relocatable CPU program RUN. 

IGNORE 

The directive format is: 

Identifies records or groups of records from the replacement file 
to be ignored. 

The IGNORE directive causes LIBEDIT to ignore a record or group of records on the 
current replacement file during record processing. 

An example of the use of this directive is: 

':<IGNORE FRAN-':< 

>:cFILEWOMAN 

LIBEDIT ignores program FRAN of the current type and all following programs of the 
current type until an end-of-file mark on the replacement file WOMAN is encountered. 

60435400 A l-C-7 



ADD 
The directive format is: 

~cADD lib. gid l • gid2 ••••• gidn 
lib Specifies that the library is to be added to the old program library 

file before the zero-length record for the old library file indicated. 
A library cannot be added if there is no zero-length record. 

LIBl to Libraries 1 through 63 on the old program library file. 
LIB63 

Identifies records or groups of records to be added to the speci­
lied library. 

The ADD directive causes LIBEDIT to append records to the specified library for tran­
scription to the new library. Two libraries are separated by a zero-length record on the 
new library file. 

I NOTE I 
Directories are determined from file OLD; adding 
a zero-length record does not change the directory 
of the library being added. 

Figure l-C-l illustrates where records are inserted with the ADD directive. 

l-C-8 

LIBI 

Adding is before 
zel'o-length r'ecol' 

LIB2 

L1B3 

LIB4 

LIB5 

LIB6 

{ 
d 

{ 
{ 

{ 
{ 
{ 

t -Last libr'ar'Y canno 
be r'efer'em:ed by 
ADD but can be' 
l'efcl'cnced by a 
REFOHE end-oC-flle 

REC 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
27 

28 
29 

~30 

31 

CATALOG OF NEW 
NAME TYPE 

COMORDW TEXT 
COMCWTW TEXT 
MODUP TEXT 
LLT TEXT 
RTM TEXT 
LIST TEXT 
{OO} 

KR005 TEXT 
CMP7 TEXT 
CMP8 TEXT 
CMP9 TEXT 
{OO} 

KR0046 TEXT 
KR0047 TEXT 
KR0041 TEXT 
{DO} 

RUN048 TEXT 
RUN049 TEXT 
RUN050 TEXT 
RUN051 TEXT 
RUN003 TEXT 
{oO} 

KRONOl TEXT 
SMP TEXT 
PMON TEXT 
ZSCP041 TEXT 
{OO} 

MODIFY OPL 
{DO} 

MODS OPLD 

,~ EOF * 

FILE 1 
LENGTH CKSUM DATE 

2065 7231 
1506 3514 

11365 2662 
2067 1046 

616 4631 
6023 7735 

SUM = 26110 

351 1413 
132 2760 
175 1324 
356 5203 

SUM = 1256 

1153 5055 
415 5313 

10005 5362 
SUM = 11575 

24 6745 
54 3744 
72 6437 
22 6671 

231 0253 
SUM = 445 

51 0703 
1373 3236 
1301 6470 
2556 3432 

SUM = 5523 

125105 2455 70/10/14. 
SUM = 125105 

57 7172 71/01112. 

SUM = 174537 

Figure l-C-l. Adding to the Old Program Library 

60435400 A 



BUILD 

The directive format is: 

dname Name of directory record. 

The BUILD directive requests LIBEDIT to construct and append a directory record in Modify 
format to the new library file. If the old library file has such a directory, LIBEDIT 
automatically generates a new directory deck without an explicit BUILD request. t 

COMMENT 

The directive format is: 

):~COMMENT rid comment 

rid Name of the record on the replacement or old library file. 

comment A string of up to 40 10 characters that is suitable as a comment. 
Additional characters are truncated. 

The COMMENT directive adds a comment to the prefix (77) table for a program on a replace­
ment file or the old library file. If the program previously did not have a prefix table, 
LIBEDIT generates one that includes the date and the comments. 

DATE 

The directive format is: 

):~DA TE rid comment 

Name- of the record on the replacement or old library file. rid 

comment A string of up to 4010 characters that is suitable as a comment. 
Additional characters are truncated. 

The DATE directive adds the current date and the specified comment to the prefix (77) table 
for a program on a replacement file or the old library file. 

NOREP 

The directive format is: 

):cNOREP Hnl' lfn2' ••• ,Hnn 

The NOREP directive declares the specified replacement files to be no-replace files. LIBEDIT 
does not replace all records of the old library file with records on the no-replace file 
having identical names but selectively replaces records from a no-replace file according 
to REPLACE, INSERT, and BEFORE directives. 

t BUILD can also be used to change the directory name. 

60435400 A l-C-9 



RENAME 

The directive format is: 

*RENA ME rid, name 

rid 

name 

Name of the record on the replacement or old library file to be 
renamed. 

New name of the record (1 to 7 characters). 

The RENA ME directive assigns a new name to a record on the old library or the current 
replacement file for transcription to the new library file. If the renamed record is 
referenced by another correction statement in the same run, the old name should still 
be used. 

REPLACE 

The directive format is: 

Name of the record or record group from the replacement file 
to replace on the old library file. 

The REPLACE directive directs LIBEDIT to selectively replace records on the old library 
file with records of the same name from a current replacement file that has 'been de­
clared a no-replace file (refer to the NOREP statement description). Thus, the user can 
selectively replace records by using the NOREP and REPLACE directives, or he can 
selectively not replace records by using the IGNORE directive according to the circum­
stances. 

An example of the use of this directive follows: A user has a replacement file named 
FRUIT containing records A PPLE, CHERRY,' GRA PE, and ORANGE. Records having the 
same names are on the old library file. The user wishes to retain records A PPLE and 
CHERRY but replace records GRA PE and ORANGE. 

The following two sequences of directives produce the same results. 

~~REPLACE GRAPE-ORANGE *IGNORE APPLE-CHERRY 

COpy 

The directive format is: 

The COPY directive directs LIBEDIT to copy the new library file to the old library file after 
it has processed all correction statements. ' 

l-C-I0 60435400 A 



LIBEDIT /LIBGEN EXAMPLES 

The following examples illustrate the use of LIBEDIT and LIBGEN. LIBEDIT manipulates 
program library files that can contain many different record types; LIBGEN only gener­
ates a user library from relocatable (REL) records. 

Example 1: 

The following job builds a program library from a replacement file that consists of 
relocatable binary (REL) type records. 

LIBTES1. 
USER, EFD25. 
CHARGE, 16, 13N122. 
FTN, L=O. 
DEFINE, TESTLIB. 
CATALOG, LGO, R. 
LIBEDIT, P=O, N=TESTLIB. 
CATALOG, TESTLIB, R. 
IEOR 

IEOR 

SUBROUTINE A 
STOP 
END 
SUBROUTINE D 
STOP 
END 
SUBROUTINE C 
STOP 
END 
SUBROUTINE B 
STOP 
END 

~:'BUILD LIBRARY 
~:'B, *, RELlA, B, C, D 
IEOF 

The FORTRAN Extended compilation produces relocatable binaries on the default file 
LGO. 

The DEFINE statement creates a direct access permanent file TESTLIB on which the 
new program library will be written. 

The first CATALOG statement gives the following listing of the LGO file. 

CATALOG OF LGO I=TLC' t 75/ nq1t6. 0~.l'Iq.03. PAGE 
RE'C NA~F TYPE LE'NGTH CI(~II'" nllTf rO~HFNTC:; 

t A RE'l 3[1 tZ~O 7f,'Cql1". 01l.08.e:" NOS t.l ~TN ".6"3~ 666)( r OPT=t 
Z 0 RH lC 50'!" 76/[lQ/l". C" ."".58 NOS t.l F'TN ".6433 661'X r nPT=l 
3 C RC'l 10 16t3 "'~/"q/1". !'II.O".I;II NOS 1.t F'TN 4.6433 661'X I OPT=l 
It 8 REl 3(1 C;IoU 76/1!Q/ll;. "".0 11 .511 NOS 1.t I=T'" 10.6"13 666X T OPT=l 
C; • EOI= • Stl'4 ::' 11." 

60435400 C l-C-l1 • 



The P=O in the LIBEDIT statement indicates there is no old program library. The N 
parameter indicates the new program library will be written on file TESTLIB. The 
replacement file will be the default LGO. The directives will be on the default INPUT 
file. 

LIBEDIT reads the binaries from LGO and the directives from INPUT. On the basis 
of the directive specifications, the binaries are inserted before the end-of-file on file 
TESTLIB in the order specified in the directives (A, B, C, D). The directory record 
created is given the name LIBRARY as a result of the >:~BUILD directive. It is written 
before the end-of-file on the new program library TESTLIB. 

The directives are written to OUTPUT. The records on file TESTLIB are listed on 
the next page of OUTPUT. The following listing consists of these two pages. 

lIBEOYT nYPECTYVE cap.o~ • 

• ~IJtln lyqOloY 
·B,·,RElfA,B,C,O 

RECOROS WRITTEN ON FILE TESTtYA 

RECORO 

TNSEPTf'J 1\ 
PlSE'HfO 8 
INSERTErI C 
INSERTEO 0 
A OIlED ltBRaRY 

··£01"·· 

TYPE 

RF'l 
RC'l 
qF'l 
REt 
(le-LO 

FTlE 

lr.r 
lr.n 
tGr 
ll;C ..... 

~~T'" r.(l""1"'",T 

7F,/OQ/t". OI'l.OIl.C'II 
7f:/(lQ/16. "".(' 11.5'1 
?~/OQ/l". I\1I.0'l.rll 
""/OQ/l". 0".01'\.1S" 
"6/f1Q/t6 • 

76/"1'1/1':'. O".Oq."~. olr.!" ? 

NO~ 1.1 F'T" ".6"33 f,""X I nPT=l 
~1(lS 1.1 FTf.; C..6C.3~ 6"" ... 1 OPT=1 
NOS 1.1 I='T" ".6C.:n 1;6"'1 ! ,",PT=l 
NO~ 1.1 FTI..: C..6"3~ 6f,f,X Y nPT=l 

The second CATALOG statement produces the following listing of information about the 
records on TESTLIB. 

CATALOG QF' TESTtI9 F'Tlf. 
~EC NIUE TVeE lENI;TH r.1(~11" r,,"'C' 

A pn ~O 1220 ?F./OQ/l"'. 
? q RH ~r C;411 "6/[1 t;/1"'. 
'3 C REt 1" 1"1~ 76fOQ/1". 
I. n REl "H 6[1~0 ? .. /l'lCU' .... 

LII3RAr:>V OPLO 1:- 21173 76/f1 CU1". 

t; . ~(lF' . c:ll'" \'q 

Example 2: 

~6/I')Q/1" • 
rn"'HFNT') 

(1".1')".1:6 NO') 1.1 
rfl.O".c:i1l Nee; t.l 
Oll.O".C'fI NOS 1.1 
(I'.O".C;II NOS t.l 

O'l.l)q.or.. 

F'TN 4.64 :n 
F'TN 4.64 ~~ 
F'TN 4.f,4~~ 

Fnl r..643~ 

par.F' 

61i"X 
66"X 
66~)t 

6EF.X 

T 
I 
I 
T 

r)PT=l 
nPT=l 
OPT=l 
npT=l 

This job builds a new program library from an old program library by inserting new 
relocatable routines into and deleting routines from the old program library created in 
example 1 (TESTLIB). 

• l-C-12 60435400 C 



LIBTES2. 
USER, EFD2S. 
CHARGE, 16, 13N122. 
FTN, L=O. 
ATTACH, OLD=TESTLIB. 
DEFINE, NEW=TES2 LIB. 
LIBEDIT. 
CATALOG 1 NEW 1 R. 
IEOR 

IEOR 
;:'TYPE REL 
;:'11 B, BONE 
;:'1, C 1 NEWC 
;:'D C 
IEOF 

SUBROUTINE BOND 
STOP 
END 
SUBROUTINE D 
STOP 
END 
SUBROUTINE NEWC 
STOP 
END 

Three relocatable binaries (BONE 1 DI and NEWC) are produced via a FORTRAN 
extended compilation. 

The old program library (TESTLIB) is attached in read mode and is referenced as OLD. 

A direct access file (TES2LIB) is created for the new program library. This file will 
be referenced as NEW. 

LIBEDIT reads the binaries from the replacement file LGO and the input directives 
from file INPUT. It writes the modified old program library (OLD) to the new program 
library (NEW). BONE and NE\VC are inserted after records Band C, respectively, and 
record· C is deleted. Record D, which already existed on the old program library, is 
replaced by record D from the replacement file LGO. The following action is taken on 
file NEW. 

"TVPE REl 
"ItB,~ONE 
"I,C,NEWC 
"o,e 

RECORQ 

Il 
1:1 

I~ISrQTEn 110NE 
[lI='LET ~o- fe) 
INSEQTEO NEwC 
RI?:PtA CE'I) 0 
AOOrO· lTaRARY 

.... (01='· .. 

60435400 C 

REL 
REt 
R~l 

~n 
REl 
PH 
OPLO 

FILE 

...... 

nllTI=' t"O"''''''MT 

76/0Q/16. "1\.('1\."''1 
7"'/OQ/lF,. 0".(1'1."1\ 
7f,/"Q/1". O".flQ.?F, 

"""0'l/16. "1'I.00.2F, 
7"'1"0/1"'. OA.OO.?F, 

, "f./nQ/16. 

71'/0 0 /1"'. 01\. 0'!1 • .,.". OA(;IO 2 

"'oc; 1.1 FTN I.. f:,4 11 "/;I'Y t OPT=1 
Nrs 1.1 FTt- 4.61. 'f~ "''''''')( t r,PT=1 
Nn~ 1.1 I='TN 4. "'I.~" 1;(6)(' I r,PT=1 

Nrc: 1.1 FTN 4 • ..,1.1" 6F.6'1( I nPT=l 
"'(IS 1.1 F'n; 1..!;4~" 6/;f,)(' T OPT=l 

1-C-13 • 



The CATALOG shows the following content of the new program library. 

CnAlOG OF' NEW FTlC:: 1 76/nq/lf1. DII.nq.~I. PAGF' 
RE'C ,~" IIF. TVPE l ~Nr;TH CI{<::'JM [lATF' rO"'HF.NTS 

A ~£l 3" 1220 "'''/(lQf1';. (l8.01\.~11 NOS 1.t F'TN 4.6411 615"" I IlPT=1 
~ a REt ~" c;r.tt 71;/0 0 /16. I'1I.nA.I;!! NOS 1.1 FTN 4.6433 6f1£-X I OPT=1 , 80NE REt 1n 06"'''' 7f/OQ/16. OA.(l1lI.2~ NOS 1.1 F'TN 1..6431 f,6F.X I I')PT=1 
I. -NEWC R£l "tl' 13'7 7F./OQ/l". 01l.I'C'I.2F. NCS 1.1 F'TN 4.FIt:!] 66"Y I I)PT=1 

D REt ~" 6010 76/Dq116. DII.OQ.26 NOS 1.1 F'TN r..f433 66"x T OPT=1 6 lIBRARY OPlD 1.": B12 7"/()O/,r,. 

'" • EOF' • StJ4 2"1; 

Example 3: 

This job uses LIBGEN to generate a user library file from the program library file 
TES2LIB created in example 2. 

LIBTES3. 
USER, EFD2 5. 
CHARGE, 16, 13N122. 
ATTACH, TES2LIB. 
DEFINE, LIBLOAD. 
LIBGEN, F=TES2LIB, P=LIBLOAD, N=LOADLIB. 
CATALOG, LIBLOAD, R, U. 
IEOF 

The program library TES2LIB is attached to the job! s control point. A direct access 
file LIBLOAD is defined for writing the user library file. 

LIBGEN scans TES2LIB and builds a ULIB directory of entry points, program names, 
and external references for relocatable (REL) records in the file. ULIB is copied to 
the file LIBLOAD, followed by the records from TES2LIB. A file index of random 
addresses for each record in the file is added as the last record of LIBLOAD. 
LOADLIB is the name of the ULIBand OPLD records. 

The CATALOG of the user library file LIBLOAD shows the following content. 

CATALOG OF lTBlOAO F'Tle 1 7"/01:1/11;. n~.1D.04. PAr.F' REC NAME T,(P~ lENGTH CI(C::'!H OllTF r.O"'Hr'NTC:: 
1 lllAOlTB Ul IO 11 420:;7 76/,,0/11;. 
~ A PrL 311 
1 a REl ~o 
4 anNE RE'l n 
~ NEwe qn '0 
I; 0 PEL 30 .,. lOAOlIB nPl[l t~ 

12"0 "I;/"Q/1". 1'''.0-.1':11 NOS 1.1 F'TN I. .643] 66FoX _ I 
C;r.11 76/0QI1C;. 08.0l'.el\ NOS 1.1 F'TN 4. £lit 3-' 661:.X I 
""77 7F./"0/16. 01'.0 0 .2" NOS 1.1 F'TN 4.6lt3' 66F.-'tC I 13"'7 76/00/16. 1'~.on.26 ~lOS 1.1 eTN ".1',431 f,FFoX T c;rnD "';/,,0/11;. 0".1I".?6 NOS 1.1 eTN r..61t33 66FY I 
1;3113 71;/nQ/11:. • . EOF' • SI"" 7?D 

Example 4: 

OPT=1 
OPT:1 
OPT=1 
I)PT=1 
I)PT=1 

This job deletes a record from the user library LIB LOAD created in example 3. It 
does this by deleting this record from the source library (the program library TEX2LIB) 
from which LIBLOAD was originally generated and generating a new version of LIBLOAD. 

• l-C-14 60435400 C 



LIBTES4. 
USER, EFD25. 
CHARGE, 16, 13N122. 
ATTACH, TES2LIB. 
ATTACH, LIBLOAD/M=W. 
LIBEDIT, P=TES2LIB. 
LIBGEN, F=NEW, P=LIBLOAD, N=LOADLIB. 
CATALOG, LIBLOAD, R, U. 
IEOR 
~:'D, RELlA 
IEOR 

The program library TES2LIB (containing the relocatable routines used to generate the 
user library LIBLOAD) is attached to the job's control point. 

The user library LIBLOAD is attached in write mode. 

The LIBEDIT deletes the record A from TES2LIB. The modified new program library 
is written on file NEW (N parameter default). LIBEDIT produces the following listing. 

LT8~orT OTRECTrv~ c~pns. 

·0 ,REL IA 

7F 111°/1 .... OIl.l".lll. PAr.r; 

RECOR!) TV0c:' c:'TL c:' I)~TE r.O"'M"'NT 

(1""lfT :::f')- (A) RH TFC;2U'" 
B P~L Tc:'C;;>L T'l "I',/Oq/l~. 0".0'l.c:'~ NOS 1.1 c:'TN I.. ",1.3l 66f.v T OPT=l 
BONe' RI"L TI"<;2LtQ 7Fo/OQ/t .... IlA.!1Q.?", NOS 1.1 c:'TII r.. 1'," 3l 6"Foll t)PT=l 
NE'WC RE'l Tc:'S2LTq 7':'IOQ/t6. "'1.oq. ;>", Nr'S t.l FT~ I.. 61.l~ "'f:f.Y OPT:l 
0 PEL Tc:'<; 2l Tq 76/0<}/t .... Oil .Qq.;>6 MC'S 1.1 FTN 1.."'1. 3~ "'6f,l( OPT:l 

AOOFI'l LTBR4RY OPlO . .... 76/(lQ/1F, • 
··EOF ••• T 1"<; ?L T' 

The LIBGEN statement generates a user library, using this new program library (written 
by LIBEDIT on the file NEW) as the Source file. The user library is written on the 
file LIBLOAD and has the name LOADLIB. 

The CATALOG of the user library shows the following content. 

r.ATAlOr. 0"" lTBLOAO FTlE 715/09/1"'. 0 111 .10.31. 

Pl:'~ NAM~ TYPE lENGTH CI<C:;"M [IIITf" CO"Hc:'NTS 

1 lOAOlIR IlL T'3 11 "?'<;2 7"'/OQ/1<;. 

:J '1 °fl ~O t;1.t1 7"'/11<1/1"'. I11'.0".e:1I NOS 1.1 ""TN r..61t:t~ 

l '30NE oc:'l lO 1]1',77 7"'/(I'V1"'. (18.0".;>1', "lOS t.t c:''''~1 1..6433 
I. NEWC ofL 30 1 J?7 7""(lQ/16. 08.0 o .2Fo NO'S 1.1 c:'T~' 10.6433 

:; 0 O""l 30 "030 7f)/O~/1"'. (,11.0 0 .2'" Nes 1.1 I"TN 1..61t:n 
r; LOAOLIB OPLO t:t l.:n 5 76/0Q/1(,. 

., • enF • 5!~ 1",4 

Example 5: 

P/lr.c:' 

66'" X 
f."'~X 
6F,f.X 
66"'Y 

T 
I 
T 
r 

I1PT=l 
npT=l 
OPT:l 
OPT=l 

This job illustrates a technique of deleting records from a user library, which is an 
alternative to the method shown in example 4. This alternate method uses GTR to 
collect the relocatable records (REL) from the user library and makes the desired 
deletions from this file using LIBEDIT. Then, LIBGEN generates a user library, using 
this modified copy as the source. 

60435400 C 1-C-15 • 



LIBTES4. 
USER, EFD25. 
CHARGE .. 16, 13N122. 
ATTACH .. LIBLOAD/M=W. 
GTR .. LIBLOAD, OLD. REL/~~ 
LIBEDIT. 
LIBGEN, F=NEW, P=LIBLOAD, N=LOADLIB. 
CATALOG, LIBLOAD, R, U. 
IEOR 
~:~D, REL INEWC 
IEOF 

The user library generated in example 4 (LIBLOAD) is attached to the job's control 
point. 

The GTR statement reads the relocatable records from LIBLOAD and writes them on 
the file OLD. (This control statement terminates after OLD; the REL/~:~ is a directive 
specifying all relocatable records.) 

LIBEDIT references the program library OLD and the directive record, deletes NEWC, 
and writes this modified file on the default NEW. The following is a listing of NEW. 

LI8EDIT DIR~crIVE r.A~D~. 

Q:COQOS 'fQITTE'N ON FTLE NC'W 7"'/(lQ/1F,. Oll.10.1t0. oAr.r ? 

RfCMO TV"E' F'TLF OUF' "O'-I1C'NT 

8 ~fl OLD 7':'/OQ/16. 01l.0".e:" tIns 1.1 C'T" 1t.6t.]" 66"'X ! OPT:l 
aONE' Rn flL" '7f./~Q/16. OIl.OC!.~S ~'OC:; 1.1 F'TN 4.6t.l" ,:,r,f,Y '! OPT=l 

OFlEHIJ- (NE'\fC) I?H nL" 
(I QFl OL(l '76/"Q/tF,. 1I11.I'Q.?t. N('C: 1.1 FTN 1t.f,L ~ .. f;6r,y I OPT=1 
··:OF'·· OLn 

LmGEN generates a new user library on the file LIBLOAD. 
.and names the new user library LIBLOAD. 

It uses NEW as the source 

The user library is cataloged to show the following contents. 

CATALOG OF lTBlOAO C'TlC' 7'i'''Q/16. nR.I0.41. "tlroC' 
RfC NAI1E TYPE L:NGT~ CI(S~11 flATC' rOMHC'NTS 

1 lOAOLTS ULTP. 7 "'7 7 7 '76/0Q/U;. 
=' a Qfl 30 &;411 '7"/(lQ/lt.. ('1I.11~.5" NOC; 1.1 "'T~J 4.f.433 66':'X I "PT=1 
~ BONE RH 1(1 0':''77 7"/09/16. OIl.llo.?", NOe:; 1.1 "'TN 4.FlItJJ 66f,Y T OPT=l .. 0 PH JO '!I030 '76/"O/H •• "-.Il".?f. NOS 1.1 rTt' 1o.61t3l 66"Y I npT=l 
0; LOAOLI8 I'I"Ln 11 711'77 "~/rQ"(,. 

.., 
• E'OF • ~l'" PO 

Example 6: 

This job uses LIBEDIT to add a user library to a program library. The user library is 
the version of LIBLOAD generated in example 4. The program library is an existing 
file, MYLIB. Since LIBEDIT manipulates ULIB type programs as a single unit, the 
entire user library is added to the program library. LIBEDIT cannot access individual 
elements within a user library. 

• l-C-16 60435400 C 



LIBTES6. 
USER, EFD2 5. 
CHARGE, 16, 13N122. 
ATTACH, MYLIB. 
ATTACH, LIBLOAD. 
DEFINE(NEW=NEWLIB) 
LIBEDIT, P=MYLIB, B=LIBLOAD. 
CATALOG, NEW, R. 
CATALOG, NEW, R, U. 
IEOR 
~:~ADD, LIB2, ULIB/LOADLIB 
IEOF 

MYLIB and LIBLOAD are attached to the job's control point. 

A direct access file NEWLIB is defined. It is referenced as NEW so it can serve as 
the default file on which the new program library will be written. 

LIBEDIT reads the replacement file LIBLOAD and the input directive. The directive 
specifies that the addition will be before the zero-length record that terminates the 
second library on the old program library. The addition will be the user library 
LOADLIB. The new program library is written on NEW with an updated file directory 
added at the end. The following listing of NEW is written to OUTPUT. 

RECORO~ "'RTTTE~ ON FIlE NEW 

RE'CMO TVPe." I='Tlf 

OUT PP MVlTB 
01) tfVl IIJ 

"C::OPT OVl ,",VlIB 
INSERTEO lOADlIB tllIB l IBlOAD 

00 t1Vl Ie 

P~OCl TI='YT "Vl T8 
PROC21 TEXT tfVl Ie 
00 "Vl IP. 

COMC,(IO OPle "Vl IB 
OUT OPl "4Vl TP. 
HSO~T OPl "VlIB 

AnOE'D HYlIR DPlO ••••• 
··EOF·· ",Vl TI3 

60435400 C 

~~/O~/~~. ~1/03/01. 73/n~/t~. HUlTI-Tep"TN~l C:;OPT ROUTtNE. 
~6/0q/16. 

7~/oq/llo. 

76/0Q/tlo. 
76/f)CHlt.. 
7~/OQ/l~. 

2 

1-C-17 • 



The first CATALOG shows the following content of the new program library. 

CATALOG O~ NEW ~Tl~ 76/09/16. 0~.11.00. PIIGF' 
REC NAME TYPE IF.NI;Tt4 "I(SU" "UF' """I1~.,TS 

O'JT P" (1100) 25~' 62~1.! ""/I.!"/I:I". 7~/0"/20. D~lEA~E nUTDUT FTlE~. 
? (0 0) SUM = 21j~ 

1 "SORT OVl 00,1)0 21;? 0"'0 7f;/1I~'O". 71/0~/~1. 73'""'15. ~UtTT-T~RMI.,al SOQT RnUTT"~. 
ft LOI01I9 uue 7 '777 ""/OQ/itr.. 
9 (DO) S.,. "12 

10 PROCI TEXT fa 71}1~ 

11 PRnC2i TEYT .... 16t;? 
1? nOl SUM "" 
11 COMCno OPlC (1;'" "13 0(103 7tr./"Q/llo. 
tit OIlT OPl (6") 161t; 1 .. 11 7fl'IIQ/llo. 
IS M~ORT OPl (" .. , 20102 ",0"" 7"'/nQ/11o. 
16 MYlt8 OPlO ~3 .... " .. ""/OQ/lr,. 

17 .. ~OF .. SlJ'f = Ii 1"" 

The entire user library is added to the program library. 

The second CATALOG specifies the U parameter, which includes the records of the 
user library in the following listing. These records begin a second page in the 
printout. 

r.aTlllOG OF' .'EW F'Tl~ 71)/09/1". 0".11.0i. par.~ 1 
oE'C NAME T"P~ lr:'Nt;Tt4 r.1(C:IJ'" !"ITF' rO"'HF'NT<; 

OUT PI' (1100) 2"': r,?20 "'6/""/0". "':/O~/20. D~'F'''C:r:' OUTPUT FrLES. 
? (0')) COl,. ~ ,.:C' 

MSOIH OVl 00,00 2"2 1]720 7r,/0~/0~. "1/0~/01. 73/0!l/1t;. "'UlTT_TFD"INIL S"RT oOUTINF.. 

CaTALOG OF' NEW ~Tla: 1 "6/0Q;I". 0".11.01. D.r-~ Z 
PIE'r. N'''1~ TYD'! l~"I;T" CI(~II'" "ATC!' rO'4MF'''T~ 

e. lOIOlIe IIUS '" 17"7 "'tr./lI C /l". 

" R R~l 10 ""11 7",,,9/1&. 0". "". "8 NOS 1.1 F'Ttl ".6"~'1 "6t.x I OPT=1 

'" BONt RI!l 30 II,.",,:,, 7f'/"Q/16. 08.00 .26 NOc: 1.1 ~nl ".6433 6~6X T I)PT=I .. I) PH 10 ';010 "'6/0Q/l". O~."o.?" NC4) 1.1 C!'TN It. 6ft 3:' 6~"X T OPT:l 
lOlllJltB OPlO 11 71)"7 76/11°/1"'. 

'1 (II 0' <:U'f ,"12 

1'1 P~'lCI TfYT .. 7"11; 
11 PROC'll TF;yT .... Ht;? 
t2 (ft '" COlJ'ol 1;(1 

1'3 CO HClCT 0 OPLr. ("" , 1$13 "0'13 76/0·Utla. 
Ie. ('HfT ""l (I)'" 1615 1"11 7", OCJ/l 10. 
1": "Sr.~T OPl (I)", 2'142 J""''' ",,,,,,at! 10. 

11) MYlT8 OPlO :?l .... 7 .. "6/0Q'16. 

tOP • E'(\~ • ~..,.. = 1;,,,,, 

• l-C-18 60435400 C 



JOB OUTPUT INFORMATION D 

Appendix D lists the output information printed for the sample job shown below. The 
notes in the right margin identify the various format conventions of NOS output. The 
job consists of the following statements. 

TESTA(CM50000, T10) 
USER(JEANCOM, PASSWOR, SYS172) 
FTN. 
-EOR-

PROGRAM CONVER(INPUT, OUTPUT) 
C THIS PROGRAM CONVERTS OCTAL TO DECIMAL 
C THE SECOND VALUE PRINTED IS 10 OCTAL TIMES THE FIRST 
C TERMINATE BY TYPING ZERO 

2 CONTINUE 
READ 1, J 

1 FORMAT(08) 
K=J~nOB 

PRINT 6, J, K 
6 FORMAT(5X, 110, 5X, 110) 

IF(J. EQ. 0)3,2 
3 CONTINUE 

STOP 
END 

-EOI-

60435400 A I-D-1 



...... 
I 

tJ 
I 
~ 

en 
o 
~ 
W 
CJl 
~ 
o 
o 
tJ:j 

AAAAAAAAAA 
AAAAAA AAAAAA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AAAAAAAAAAAA 
AAAAAAAAAAAA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 

NOS 1 

AA AAAAAAA~ 
AAA AAA~AA AAA 
AA AA 
AA AA 
AA AA 
AA AA 
AA ~A 
AA AA 
AAA A AAAAA AAA 
AAA A AAAAA AAA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 

yy/mm/dd. 
OprRATIN~ SYSTEM 

JOB i)~IGIN = eATCH. 

USER ~UM9ER = JEANCOM 
JOBCARJ'NAME; TESTAOD 

FFFFFFFFFFFF 111111111111 
FFFFFFFFFFFF 111111111111 
FF II 
FF II 
FF' II 
FF' II 
FF 1.1 
F'FFFFFFF II 
FFFFFFFF II 
FF II 
FF II 
FF II 
FF II 
FF II 
FF IIIIIIIIIIII 
FF 111111111111 

yy/mm/dd. hh. mm. SSe 

The first three lines of the banner page indicate that this local batch job 
was run under the control of the Network Operating System. 
creation date is specified by yy/mm/dd. (year/month/day.). 

The system 

The user number is that which was supplied on the USER statement. The 
jobcard name is the name of the particular job which was supplied on the 
job statement. 

AAAAAAAAAA JJJJJJJJJ JJJ COCCCCCCCC The first four characters 
AAAAAAAAAAAA JJJJJJJJJJJJ coeceeoce cee of the banner job name 
AA AA JJ ec ce are generated from the 
AA AA JJ eo user index associated 
AA AA JJ CC with the user number. 
AA AA JJ CC These four characters 
AA AA JJ CO are unique to each user 
AA AA JJ ee and remain the same for 
AAAAAAAAAAAA JJ ce subsequent jobs run under 
AAAAAAAAAAAA JJ CC the same user number. 
AA AA JJ CO The last three characters 
AA AA JJ CO are the job sequence num-
AA AA JJ CO ber assigned by the sys-
AA AA JJ JJ CC ec tem at the time of pro-
AA AA JJJJJJJ ecececceeece cessing. 
AA AA JJJJJ eCCCCCCCCC 

This line specifies the current date (year/month/day.) 
and the time (hours. minutes. seconds. ) when job 
printing was initiated. 



(J} 

o 
~ 
CAl 
CJ1 
~ 
o 
o 

to 

...... 
I 

t1 
I 

CAl 

P~OGRAM' CONVER 73/74 OPT=1 FTN 4.4+U401 

1 PROGRAM CONV~R(r~PUTtOUTPUT) 
THIS P~OGRA~ ~ONV~R~S OCTAL TO OE~IMAL c 

c 
c 

THE SECOND VALUE PRINTED IS 10 O~TAL TIMES THt Ft~ST 
TERMINATE 1Y TYPING ZE~O 

5 

10 

2 CONTINUE 
READ 1,J 

1 FORM AT( 08) 
K=J·10'3 
PRINT &,J,K 

6 FORMAT(5X,I10,5~,Il0) 
IF(J.EQ.0)3,2 

3 CONTINUE 
STOP 
END 

SYMBOLIC RSFERENCE MAP (~=1) 

E~T~Y POINTS 
(.107 CONVER 

vt. RUBLES 
1·137 J 

FJ LE NAMES 
o INPUT 

S~ TYPE 
INTEGER 

HODE 
FHT 

STATE~ENT LABEL5 

~ELOCIHIJN 

2041 OJTPUT FMT 

":1241 FMT 4110 2 
:.133 G FMT 

Si ATISTICS 
P~OGRAH LENGT-i 
BUFFE~ LE~GTH 

J6B 
41038 

30 
2115 

4140 K INTEGER 

o 3 

yy/mm/dd. hh. mm. SSe PAGE 1 

The job calls the FORTRAN Extended compiler 
which compiles the program, CONYER, contained 
in the program record. The symbolic reference 
map for program CONYER is printed below. 

INACTIVE 



• 
~ 

I 

t:l 
I 
~ 

0) 

o 
.;:. 
CAl 
CJ1 
.;:. 
o 
o 

(J 

AAFIAJC. yy/mm/dd~(10) CYBER 172. 

08.0~.57.lrBTES1. 
OR.08 .5 7 .USER,HHAODEN,. 
o a. DB .C;~'.CH ARG£, 10 9T, 9 OMF. 
08.08.~~.FTN,L=O. 
08.0q.O~. .OQ5 CP SECONDS COMPILATION TI"t 
08.nq.O?OE~INE,TESTLT8. 

0~.Oq.03.CATALOG,LGO,R. 
08.09.03. CATALOG COt1~LETE. 
OA.Oq.01.lrSEOTT,P=O,N=TESTtIB. 
0~.Oq.04. EOITrN~ CO~PLE~E. 
os.rq.04.caTAlOG,TESTlIS,R. 
O~.Oq.04. CATALOG COMPLET€. 
oe.C Q .04.UEAO, O.002~UNS. 
0~.Oq.04.UEPF, 0.013KUNS. 
O~.Q9.04.UtMS, 2.360~UNS. 
OA.OQ.04.U~CP, O.1;7SECS. 
08.0q.04.AES~, 2.003UNTS. 
08.15.1ry.UClP, 23, 0.512 ~lNS. 

NOS This line specifies the job name. the current date. 
and the computer system beinj,~~ed~ "_ . 
The dayfile includes a listing of the control state­
ments. system-supplied status messages. and 
program output. if any. Spaces precede status 
messages and program output. Each line includes 
the time the message was issued to the dayfile. 

The last six lines specify the type and amount of 
system resources the job used. 
This job used 0.002 kilounit of application 
activity. 0.013 kilounit of permanent file activity. 
2.360 kilounits of mass storage activity. 0.157 seconds 
of central processor time. and 2.003 SRU. The job 
produced 0.512 kiloline (512) of printable output. 
Depending on the resources used. additional information 
may be included in the dayfile. Refer to Job Completion. 
section 3 for the formats of these messages. 



PERMANENT FILE DEVICE STATISTICS E 

The system allocates space for permanent mass storage files in units called reservation 
blocks. The size of a reservation block depends upon the type of file and! or the type 
of device on which the file is to reside. For indirect access files, the reservation 
block size is always one PHU (64 CM words), regardless of the device residence. 
For direct access files, the reservation block size is a multiple of PRU s and varies 
according to the device type, as shown in the following table. 

Device PRUs/ CM Maximum 
T~Ee Device Block Words Characters No. of Block~_ 

DE Extended Core Storage 16 1024 10,240 121 for 125K 
243 for 250K 

01 844 -21 Disk Storage n~:'107 n~:'6, 848 n~:'68, 480 1616 
Subsystem (1 ~ n:s, 8) 

OJ 844-41/44 Disk Storage n~:'227 n~:'14, 528 n~:'145, 280 1640 
Subsystem '(1:S n,:S.8) 

DP Distributive Data 16 1024 10, 240 121 for 125K 
Path to ECS 243 for 250K 

MD 841-n Multiple Disk n~:'32 n~:'2048 n~:'20, 480 1600 
Drive (1:s,n:s.8) 

In this table, n indicates the unit count for multiunit devices. 

In general, the largest permanent file the user can create is a direct access file that 
resides on a nonmaster device within his family of permanent file devices. Such files 
are restricted in size by the limitations of the device itself and the OS validation 
parameter which limits the size of direct access files. If no DS restriction is imposed, 
the maximum file size equals the maximum number of reservation blocks that can be 
allocated for the device. 

All other permanent files reside either on the user I s master device or on an auxiliary 
device. Their maximum size is restricted to the device limit minus any space allo­
cated for catalog information and other files. In addition, an installation can use the 
FS validation parameter to limit the size of indirect access files. 

60435400 C l-E-l 

I 





CARD FORMAT AND CONVERSION PROBLEMS F 

Data within the system is stored in binary or coded records. Binary records are vari­
able in length and consist of central memory images. Coded records consist of lines 
of display-coded characters. Binary and coded data can enter the system in several 
diff~rent formats. Some of these formats can enter the system directly; others must be 
converted into a system-recognizable format. In either case, there are several formats 
in which the data can reside in the system. Accordingly, the processing program must 
take into account the specific format of data it accesses. 

This appendix describes the formats for punched cards and the format for printed data. 
It also describes the conversion performed by the system on data transferred between 
the system and peripheral devices and the method by which time-sharing terminal data 
is converted in the system. 

When using the 64-character. set, the user should avoid using consecutive colons (00 
characters). It is possible for these colons to be interpreted as an end-of-line. An 
end-of-line is defined as 12 to 66 bits of zero, right-justified in one or two central 
memory words. If consecutive colons appear in the lower 12 bits of a central memory 
word, they are interpreted as an end-of-line rather than as colons. 

Example: 

The following characters are punched on a coded card beginning in column 1. 

:: :: : ::: :A:: ::: :: :AA 

This would appear in memory as follows: 

59 47 35 23 11 0 

I 00 00 I 00 00 00 00 I 00 00 I 00 01 I 
A 

[io 00 00 00 00 00 00 00 01 01 

A A 

00 00 00 00 00 00 00 00 00 00 

end-of-line 

60435400 C I-F-1 



However, if the characters were copied with the COPYSBF utility, the following would 
appear. 

59 

I 55 00 

01 00 

A 

01 00 

A 

47 35 23 11 o 
I 00 00 I 00 00 I 00 00 I 00 00 

end-of-line 

00 00 00 00 00 00 00 01 

A 

00 00 00 00 00 00 00 00 

end -of -line 

I NOTE I 
If a colon is the last character of a line, the 
system appends a blank character to preserve 
the colon and then appends an end-of-line 
(two blanks may be added to ensure an even 
number of characters). 

FORMATS FOR CARDS READ 

The system reads cards in coded and binary formats. The following conditions apply 
in both formats. 

• A card with a 7/8/9 punched in column 1 is an EOR mark. 

• A card with a 6/7/9 punched in column 1 is an EOF mark. 

• A card with a 6/7/8/9 punched in column 1 is an EOI mark. 

The remainder of each card is ignored except for columns 79 and 80 of the EOR and 
EOF cards. These columns can contain the keypunch conversion mode for the input 
records that follow. Conversion modes are discussed in the following section. 

CODED CARDS 

Cards are read in Hollerith punch code. The 3447 card reader controller converts the 
Hollerith code to internal BCD code and passes the data to the card reader driver. The 
driver converts the data from internal BCD code to display code. Up to 80 characters 
can be transferred per card. Trailing spaces are deleted. 

Two conversion modes, 026 and 029 t, exist for the Hollerith punch code. All data 
is converted in the system default keypunch mode unless a conversion mode change is 
specified. This change can be specified on any of the following cards. 

The job card, 7/8/9 card (EOR mark), and 6/7/9 (EOF mark) can contain the keypunch 
conversion mode in columns 79 and 80. A 26 punched in columns 79 and 80 indicates 
all subsequent coded cards are converted in 026 mode. A 29 indicates subsequent 

t These codes are ignored by a 200 User Terminal since conversion mode is selected 
by a hardware switch. (Refer to the Export/Import Reference Manual.) 

I-F-2 60435400 A 



cards are converted to 029 mode. Each conversion change remains in effect until an­
other change card is encountered or the job ends. The user can switch between 026 
and 029 mode as often as desired. If 26 or 29 does not appear in columns 79 and 80 
of the job card, the initial keypunch mode of that job (s the system default mode. 
If 26 or 29 does not appear on a 7/8/9 or 6/7/9 card, no conversion change is' made 
and the most recent keypunch mode remains in effect. 

Keypunch mode can also be changed by a card containing a 5/7/9 punch in column 1. 
A blank (no punch) in column 2 indicates 026 conversion mode; a 9 punched in column 
2 indicates 029 mode. The conversion change remains in effect until another change 
card is encountered or the job ends. 

The 5/7/9 card also allows literal input when 4/5/6/7/8/9 is punched in column 2. 
Literal input allows 80 column binary data to be read while transmitting input in coded 
mode. Cards are read (16 central memory words per card) until a card identical to 
the previous 5/7/9 card (4/5/6/7/8/9 in column 2) is read. The next card can then 
specify the new conversion mode. 

BINARY CARDS 

Binary cards are denoted by a 7/9 punch in column 1 and can contain up to 15 central 
memory words. The 3447 card reader controller reads the binary data and passes it 
to the card reader driver in 12 -bit codes. Each card column row corresponds to a bit 
position. The driver checks the checksum figure if this option is specified. The driver 
then passes the data to the central memory buffer. 

The fields within a binary card are: 

Column(s) 

1 

2 

3 through 77 

78 

79 and 80 

60435400 A 

Description 

7/9 punch indicates a binary card 

4 punch ignores checksum punch in column 2 

Rows 0, 1, 2, and 3 contain the binary equivalent of the 
word count of the card 

Binary data checksum (modulo 4095) 

15 central memory words of binary data 

Blank 

24-bit binary card sequence number 

I-F -3 



SUMMARY 

The following punches appearing in column 1 of a card. have the corresponding meaning 
to the card reader driver. 

Punch 

7/8/9 

6/7/9 

6/7/8/9 

5/7/9 

7/9 

Not 7 and 9 

Represents 

End-of-record (optional conversion mode change) 

End-of-file (optional conversion mode change) 

End -of-information 

Conversion mode change / read 80 -column binary 

Binary card 

Coded card 

FORMATS FOR CARDS PUNCHED 

Punched cards can be in three formats. 

• Coded (punch Hollerith) 

• Binary 

• Absolute binary 

The following conditions apply to all three formats. 

• When an EOR is encountered, a card is punched with a 7/8/9 in columns 1 and 
80. -This card is offset. 

• When an EOF is encountered for a file, a card is punched with a 6/7/9 in 
columns 1 and 80; the remainder .of the card is blank. This card is offset. 

o When an EOI is encountered on a file, a card is punched with a 6/7/8/9 in 
columns 1 and 80; the remainder of the card is blank. This card is offset.· 

• If a compare error is encountered, the erroneous card and the following card 
are offset. These two cards are repunched until no error is detected. An 
EOI card with 6/7/8/9 punches in columns 1 and 80 contains a binary count in 
column 40 of the number of compare errors. 

• During the punching of each file, the system maintains a count of the number 
of cards punched for the file. If the number exceeds the limit for which the 
user is validated, punching of the file is terminated. A special banner card 
with the word LIMIT is punched and offset as the last card of the deck. 

The following methods are used by the system to punch each of the three forms of 
cards. 

CODED CARDS (PUNCH) 

With the exception of decks punched via the DISPOSE request, the keypunch mode 
(026 or 029) of coded cards depends on the job origin type. If the job is of local 
batch origin, decks are punched in the initial keypunch mode (that is, the mode speci­
fied on the job card or set by system default). For all other job origin types, decks 
are punched in the system default keypunch mode. However, the DISPOSE request 
allows, the user to specify that decks be punched in either 026 or 029 mode, regard­
less of the job's keypunch mode. 
I-F-4 60435400 A 



BINARY CARDS (PUNCHB) 

The card punch driver retrieves 15 words of binary data from central memory. The 
driver then generates a checksum for the data and iss.ues a card number • The card 
punch controller receives the binary data and punches it on the card unchanged, that is, 
in 12-bit codes. Each row in a card column corresponds to a bit position. The driver 
formats the binary card in the following manner. 

Column(s) 

1 

2 

3 through 77 

78 

79 and 80 

Contents 

7/9 punch denotes binary card 

Rows 0, 1, 2, and 3 contain the binary equivalent of the 
word count of the card 

Binary data checksum (modulo 4095) 

15 central memory words of binary data 

Blank 

24-bit binary card sequence number 

ABSOLUTE BINARY CARDS (P8) 

Absolute binary cards are central memory images in 12-bit codes. Each row in a card 
column corresponds to a bit position. Sixteen central ,memory words are punched per 
card with no special punches or fields added. 

PRINTED DATA 

All printed data is in coded format. The line printer driver extracts data until an end­
of-line mark.occurs or until 14 central memory words are retrieved. The end-of-line 
is denoted by a zero byte as the last byte of a central memory word. The print line 
consists of a maximum of 136 characters. If an end-of-line mark does not appear after 
136 characters, the last four characters of that group are lost. The driver converts the 
extracted data from display code to internal BCD code (refer to appendix A for the 
character set equivalences) and forwards the data to the line printer controller. 

The driver interprets the first character in a line as the carriage control character 
(refer to appendix A) and that character is not printed. In most cases, the proper 
carriage control is issued while the remainder of the line is printed. However, when 
Q, R, S, or T is specified, no printing takes place for that line. The Q, H, S, and 
T format controls remain in effect until changed, and all other carriage control options 
must be supplied for each line they control. Line spacing is normally done in the auto 
eject mode; that fs, creases in the paper are skipped by the line printer controller'S 
automatic line spacing mechanism if the paper is loaded properly. Auto eject mode I 
must be deselected if the user wants to employ format channels to advance printing 
from a position above the bottom of form to a position beyond the next top of form. 

During the printing of each file, the system maintains a count· of the number of lines printed/ 
skipped for the file. If the number exceeds the limit for which the user is validated, printing 
of the file is terminated. The informative diagnostic LINE LIMIT EXCEEDED is printed. 
If a job's dayfile is part of the terminated print file, the dayfile is subsequently printed. 

The installation can impose an implied page control by setting a certain number of default 
lines for each page. If less than the default number of lines is printed/ skipped on a page, 
the line limit is still decremented by the default number of lines. 

60435400 C 



TERMINAL CHARACTER CONVERSION 

Normal input mode from a terminal consists of a 64-character set where all lowercase 
alphabetics are converted to uppercase characters. Under ASCII mode, the characters 74 
and 76 represent the beginning of a 74xx or 76xx escape sequence. Under normal mode, 
the characters 74 and 76 are treated as data rather than escape codes. ASCII and normal 
modes apply to both input and output. 

DATA INPUT 

The terminals which NOS supports can be grouped into ASCII terminals and correspondence 
code terminals. The manner in which the characters entered from a terminal are in­
terpreted by the system depends on whether the user specifies that the characters belong 
to the full character set. For example, if the user enters the following characters to be 
mapped into the full A scn set 

aAbBcCdDeEfF 

the central memory equivalent is: t 

59 47 35 23 11 o 
7.6. OJ 01 76 02 02 76 03 03 76 
04 04 76 05 05 76 06 06 00 00 

However, if a NORMAL command is issued, the characters are mapped into the subset of 
the ASCII character set; then the central memory equivalent is: 

59 47 :~5 23 11 0 
01 01 02 02 03 03 04 04 05 05 
06 06 00 00 00 00 00 00 00 00 

In ASCII mode, t t all 128 characters from an ASCII or correspondence code terminal are 
recognized. These characters, in addition to the first 64, are processed as 12-bit char-
ac ters with an escape code convention as shown previously. Table 1-A -1 lists the character 
set equivalences. The programs that process data must recognize that data is in ASCII 
mode rather than normal display code and process it accordingly. 

DATA OUTPUT 

Data output is in either a 64/63- or 128-character set, depending on whether the terminal is 
in normal or ASCII mode. When the terminal is in normal mode, the codes 74 and 76 
represent data rather than escape codes. In ASCII mode, 74 and 76 are treated as the 
beginning of an escape sequence. All information is transmitted in even parity unless the 
user specifies odd parity. 

For a more detailed description of terminal operation, refer to the Time-Sharing User's 
Reference Manual. 

Data cali also be transmitted to or from a terminal through a paper tape reader. The paper 
tape character mode is always ASCII. 

t Partial words are zero-filled; partial bytes are blank-filled. 
t t Refer to the Time-Sharing User's Reference Manual for descriptions of the ASCII and 

NORMAL commands. 

I-F-6 60435400 A 



TAPE LABELS 

The operating system accepts ANSI standard and nonstandard labeled tapes. Labels 
which do not conform to ANSI standards in format and/ or content are defined as non­
standard. 

ANSI labels perform two functions. They provide information that uniquely identifies 
a file and the reel on which it resides, and they mark the beginning and end of a file 
and the beginning and end of a reel. 

G 

ANSI labels are designed to conform to the American National Standard Magnetic Tape 
Labels for Information Interchange X3.27-1969. All labels are 80 characters in length 
and are recorded at the same density as the data on the tape. The first three char­
acters of an ANSI label identify the label type. The fourth character indicates a number 
within a label type. 

The following is a summary of each label type, name, function, and whether or not it 
is required. 

Type No. Name Used At Required / Optional 

VOL 1 Volume header label Beginning-of-volume Required 
UVL 1-9 User volume label Beginning-of-volume Optional, 
HDR 1 File header label Beginning-of-file Required 
HDR 2-9 File header label Beginning-of-file Optional 
UHL t User header label Be ginn ing-of-file Optional 
EOF ~ End-of-file label End-of-file Required 
EOF 2-9 End-of-file label End-of-file Optional 
UTL t User trailer label End-of-file Optional 
EOV 1 End-of-volume label End-of-volume Required when 

appropriate 
EOV 2-9 End-of-volume label End-of-volume Optional 

REQUIRED LABELS 

The VOL1, HDR1, and EOF1 labels are required on all ANSI-labeled tapes. In addition, 
an EOV1 label is required if the physical end-of-tape reflector is encountered before an 
EOF 1 label is written or if a multifile set is continued on another volume. In the 
descriptions of the contents of these labels, n is any numeric digit and a is any letter, 
digit, or any of the following special characters. 

t Any member of the CDC 6-bit subset of the ASCII character set. 

60435400 A 1-G-l 



Ll < 

* = 

" + > 
I ? 

$ @ 

0/0 [ 
& \ 
I ] 

" 
Some fields are optional. An optional field which does not contain the des ignated infor­
mation must contain blanks. Fields which are not described as optional are required 
and will be written as specified. Note that n-type fields are right-justified and zero­
filled, and a-type fields are left-justified and blank-filled. 

VOLl - VOLUME HEADER LABEL 

The volume header label must be the first label on a labeled tape. All reels begin with 
a VOLl label. If two or more reels belong to a volume set, the file section field in 
the following HDRl label gives the actual reel number. 

VOL I 1 I volume serial number 

va I reserved 

reserved 

reserved / 
owner. 

ident'ification 
owner identification (oid) 

oid / reserved 
reserved 

reserved /lSl 

l-G-2 60435400 A 



C') Character Length Checked on 
0 Position Field Name (in characters) Contents Default Read 
~ 
CA:l 
CJl 1-3 Label 3 Must be VOL Yes ~ 
0 identifier 0 

> 4 Label number 1 Must be 1 Yes 

5-10 Volume serial 6 Volume identification As read from Yes, if the 
number assigned by owner to existing label file was 

identify this phys ical reel assigned by 
of tape volume serial 

number 
An a character which in-

11 Accessibility 1 dicates the restrictions, Blank (un- No (refer to 
(va) if any, on who may have limited access) B LANK control 

acces s to the information statement) 
on the tape. A blank 
means unlimited access. 
Any other character 
means special handling, 
in the manner agreed 
between the interchange 
parties. Refer to the 
BLANK control statement. 

12-31 Reserved for 20 Must be blanks No 
future standardi-
zation 

32-37 Reserved for 6 Must be blanks No 
future standardi-
zation 

38-51 Owner identi- 14 Any a characters identify- family Refer to dis-
fication (oid) ing the owner of the name, user cuss ion of fa 

physical volume number field of HDRI. 

52-79 Reserved for 28 Must be blanks No 
future standardi-
zation 

80 Label standard 1 1 means the labels and data 1 No 
level (1s1) formats on this volume con-

form to the requirements of 
I-A the ANSI standard. A blank 
I 

means the labels and data 0 
I formats on this volume 

CA:I 
require the agre~ment of the 
interchange parties. 



HDRl - FIRST FILE HEADER LABEL 

The first file header label must appear before each file.. When a file is continued on 
more than one volume l the file header label is repeated after the volume header label 
on each new volume for that file. If two or nlore files are grouped in a multifile setl 
each HDRl label indicates the relative position of its associated file within the set. 

HDR I 1 I file identifier (fi) 

file identifier (fi) 

fi set identification IHJ.f5 serEtion num er secno) 
:;ecno file 

Sf'ouence number I generation number I gvn 

gvn creation date I eX~l~t~tlon 
expiration 

date I fa I block count 

system code 

system code I reserved 

I-G-4 60435400 A 



0) 

0 
~ 
CA) 

CJl 
~ 
0 
0 

:x> 

1-4 
I 

o 
I 

CJl 

Character 
Position 

1-3 

4 

5-21 

22-27 

28~31 

32-35 

Length 
Field Name (in characters) 

Label 
identifier 3 

Label number 1 

File identifier 17 
(fO 

Set identification 6 

File section 4 
number (secno) 

File sequence 4 
number 

Checked on 
Contents Default Read 

Must be HDR Yes 

Must be 1 Yes 

File identification (fileid) Blank Checked if 
parameter on the LABEL specified 
control statement 

Set identification as speci- Blank Checked if 
fied by the setid parameter specified 
on the LABEL control 
statement. This value 
must be the same for all 
files of a multifile set.· 

The file section number of 0001 Checked if 
the first HDR1 hibel of a specified 
file is 0001. If the file 
extends to more than one 
volume, this number is 
incremented by one for 
each subsequent volume. 
This value corresponds to 
the secno parameter on the 
LABEL statement. 

Pos ition of a file within a 0001 Checked if 
file set, as specified by the specified 
seqno parameter of the 
LABEL statement. This 
value is 0001 for the first 
file, 0002 for the second, 
and so on. In all the labels 
for a given file, this field 
will contain the same number. 



..... 
I Character Length Checked on 

0 Position Field Name (in characters) Contents Default Read I 
0) 

36-39 Generation 4 Generation number of a file, 0001 Checked if 
number as specified by the genno specified 
(optional) parameter of the LABEL 

statement. This value is 
0001 for the first generation 
of a file, 0002 for the second, 
and so on. 

40-41 Generation 2 Two n characters used to 00 Yes 
version distinguish success ive 
number (gvn) itera tions of the same 

generation. The generation 
version number of the first 
attempt to create a file is 
00. This value corresponds 
to the gvn parameter of the 
LABE L control statement. 

42-47 Creation date 6 Date the file was created; Current date Yes. The creation 
it is recorded as a space date is meaningful 
followed by two n char- only on read opera-
acters for the year followed tions; on write opera-
by three n characters tions, the current 
for the day within the year. date is always used. 
This value corresponds to 
the cdate parameter of the 
LABEL control statement. 

48-53 Expiration date 6 The file is considered Current date Checked if 
expired when today's date write attempted 
is equal to or later than 
the date given in this field. 
When this condition is 
satisfied, the remainder 
of the volume may be over-
written. Thus, to be effec-
tive on multifile volumes, 

0) the expiration date of a file 
0 must be less than or equal ~ 
CAl to the expiration date of all C11 
~ preceding files on the 0 
0 volume. The expiration 
> date is written in the same 

format as the creation date. 



0) 
Character Length Checked on 0 

~ Position Field Name (in characters) Contents Default' Read c.AJ 
t.n 
~ 
0 

It corresponds to the rdate 0 

() parameter of the LABEL 
control statement. 

54 Access ibility 1 An a character which in- Blank (un- Yes, if a 
(fa) dicates the restrictions, limited NOS 

if any, on who may have access) written tape 
access to the information 
in this file. A blank means 
unlimited access. If fa is A, 
only the owner of the 
NOS written tape I can access the file. If fa is 
any other character, all 
future accesses to the tape 
must specify this character 
as the fa parameter. 

File accessibility is not 
checked for system origin 
jobs. 

55-60 Block count 6 Must be zeros No 

61-73 System code 13 13 a characters identifying KRONOS No 
the operating system that 2. 1- nn (nn is 
recorded this file. The the EST ordi-
tape is considered to have nal of the unit 
been written under NOS on which the 
if the first 10 characters file was 
match the default. written) 

74-80 Reserved for 7 Must be spaces No 
future standardi-
zation 

.-
I 

0 
I 

...:J 



EOfl - fiRST END-Of-fiLE LABEL 

The end-of-file label is the last block of every file. .It is the system end-of-informa­
tion for the file. A single tape mark precedes EOFl. A double tape mark written 
after the EOF 1 label marks the end of a multifile set. 

EOF I 1 I file identifier (fi) 

file identifier (fi) 

fi set identification I nJf~~,!3~1~~cPno) 
F>ecno file 

sequence number I generation number I gvn 

gvn creation date I eX~lrahon 
ate 

ex~iration 
ate I fa I block count 

system code 

system code I reserved 

I-G-8 60435400 A 



0) Character Length Checked on 0 
~ Position Field Name (in characters) Contents Default Read Co\) 
C1 
~ 1-3 Label 3 Must be EOF Yes 0 
0 identifier 
> 

4 Label number 1 Must be 1 Yes 

5-54 Same as corre- 50 Same as the corresponding Same as 
sponding fields fields in HDR1 HDR1 
in HDR1 
(optional) 

55-60 Block count 6 Six n characters specifying Yes 
the number of data blocks 
between this label and the 
preceding HDR label group_ 
This total does not include 
labels or tape marks. 

61-80 Same as corre- 20 Same as corresponding Same as HDR1 
sponding fields fields in HDR1 
in HDR1 
(optional) 

..... 
I 

'? 
co 



EOVl - fiRST END-Of-VOLUME LABEL 

The end-of-volume label is required only if the physical end-of-tape reflector is en­
countered before an EOF 1 label is written or if a multifile set is continued on another 
volume. EOVl is preceded by a single tape mark and followed by a double tape mark. 

EOV I 1 I file identifier (fi) 

file identifier (fi) 

fi set identification I fil~ section 
number ·(se·c.:n~ 

secno seQuen~1Jenumber I ~eneration number I gvn 

gvn creation date I explratiOn 
date 

eXllfirauon 
ate I fa I block count 

system code 

system code 1 reserved 

I-G-IO 60435400 A 



0':1 
0 
H=>o 
~ 
en 
H=>o 
0 
0 

> 

.... 
I 

o 
I .... .... 

Character 
Position 

1-3 

4 

5-54 

55-60 

61-80 

Field Name 

Label 
identifier 

Label number 

Same as the 
corresponding 
fields in HDR1 
(optional) 

Block count 

Same as the 
corresponding 
fields in HDR1 
(optional) 

Length Checked on 
(in characters) Contents Default Read 

3 Must be EOV Yes 

1 Must be 1 Yes 

50 Same as the corresponding Same as HDR1 
fields in HDR1 

6 Six n characters specifying Yes 
the number of data blocks 
between this label and the 
preceding HDR label group. 
This total does not include 
labels or tape marks. 

20 Same as the corresponding Same as HDR1 
fields in HDR1 



These labels define four possible file configurations. 

• A single file on a single volume 

• A single file on two or more volumes 

• Two or more files on a single volume 

• Two or more files on two or more volumes 

Figures I-G-l through I-G-7 illustrate the use of ANSI labels in these configurations. 

I-G-12 60435400 A 



Figure I-G-I. 

Figure I-G-2. 

60435400 A 

* = TAPE MARK 
- = USER DATA 

ANSI Labels: Single File, Single Volume 

----------- .... 

* = TAPE MARK 
- = USER DATA 

ANSI Labels: Single File, Multivolume 

I-G-13 



* .""..------- ..... '"' ...... 
----FILE B ----

*= TAPE MARK 
- = USER DATA 

Figure I-G-3 ANSI Labels: Multifile, Single Volume 

l-G-14 60435400 A 



60435400 A 

*: TAPE MARK 
-: USER DATA 

Figure I-G-.4. ANSI Labels: Multifile. Multivolume 

I-G-15 



NOTE: 
THE LETTERS (A) AND (B) IN 
PARENTHESES INDICATE TO WHICH 
FILES THE LABELS ABOVE THEM BELONG. 

*=TAPE MARK 
-= USER DATA 

Figure I-G-5. ANSI Labels: End-of-File, End-of- Volume Coincidence 

I-G-16 60435400 A 



-------FILE A ---

---FILE B ----

NOTE: 

THE LETTERS (A) AND (B) IN PARENTHESES 
INDICATE TO WHICH FILES THE LABELS ABOVE 
THEM BELONG. 

*= TAPE MARK 
- = USER DATA 

Figure l-G-6. ANSI Labels: End-of- File, End-of- Volume Coincidence 

60435400 A 1~-17 



I-G-18 

....... ---._-------

* = TAPE MARK 
- = USER DATA 

(A} 

Figure I-G-7. ANSI Labels: End-of- File, End-of- Volume Coincidence 

60435400 A 



OPTIONAL LABELS 

Six types of optional labels are allowed. They are additional file header (HDR2-9). 
end-of-file (EOF2-9). end-of-volume (EOV2-9). user volume (UVLa). header (UHLa). 
and trailer (UTLa) labels. 

HDR2-9 - ADDITIONAL fiLE HEADER LABELS 

HDR2-9 labels may immediately.follow HDR1. Their format is: 

Character Length 
Position Field Name (in characters) Contents 

1-3 Label 3 HDR 
identifier 

4 Label number 1 2-9 

5-80 76 

Only the label identifier and the label number are checked on read. 

EOf2-9 - ADDIT10NAL END-OF-fiLE LABELS 

EOF2-9 labels may immediately follow EOFI. Their format is: 

Character Length 
Position Field Name (in characters) Contents 

. 1-3 Label 3 EOF 
identifier 

4 Label number 1 2~9 

5-80 76 

Only the label identifier and the label number are checked on read. 

EOV2-9 - ADDITIONAL END-Of-VOLUME LABELS 

EOV2-9 labels may immediately follow EOVI. Their format is: 

Character Length 
Position Field Name (in characters ) Contents 

1-3 Label 3 EOV 
identifier 

4 Label number 1 2-9 

5-80 76 

Only the label identifier and the label number are checked on read. 

60435400 A 

Default 
Written 

HDR 

2-9 

Default 
Written 

EOF 

2-9 

Default 
Written 

EOV 

2-9 

I-G-19 



I 

Refer to section 3, volume 2 for a description of the use of EOV2 labels in conjunction with 
CLOSER, REWIND, and UNLOAD macros. 

USER LABELS 

User labels may immediately follow their associated system labels. Thus, user volume 
labels (UVLa) may follow VOL1, user header labels (UHLa) may follow the last HDRn 
Ilabel, and user trailer labels (UTLa) may follow the last EOVn or EOFn label. Their 
format is: 

Character 
Position Field Name 

1-3 Label 
identifier 

4 Label number 

5-80 User option 

Length 
(in characters) 

3 

1 

76 

Contents 

UVL, UHL, or UTL 

Must be 1, 2, 3, 4, 
etc., consecutively 
for UVL labels. For 
other labels" any a 
character. 

Any a characters. 

Default 
Written 

UVL, UHL, 
orUTL 

Only the label identifier and the label number are checked on read. The system checks 
the number of user labels of a label type; a maximum of 64 is allowed. 

I-G-20 60435400 C 



BLOCK 

BOI 

CDC CYBER RECORD MANAGER 

CIO 

CONTROL STATEMENT RECORD 

DIRECT ACCESS FILE 

EOF 

60435400 C 

GLOSSARY H 

The information between interrecord gaps on an NOS 
tape format. This term is not defined for operating 
system mass storage devices. In CDC CYBER Record 
Manager. there are four block types for sequential 
files. Blocking is the grouping of user records for 
efficiency in transfer between memory and storage 
devices. 

B eginning- of- informa tion. 

A software product supported under NOS that allows 
a variety of record types. blocking types. and file 
organizations to be created and read. The execution 
time input/output of COBOL 4. COBOL 5, FORTRAN 
Extended 4. Sort/Merge 4, ALGOL 4. BASIC, and the 
DMS-170 products is implemented through CDC 
CYBER Record Manager. The system input/ output 
of NOS is not implemented through CDC CYBER 
Record Manager. All CDC CYBER Record Manager 
file processing requests ultimately pass through the 
operating system input/output routines. COMPASS 
programs can use either CDC CYBER Record Manager 
or NOS input/output (CIO). 

Combined input/output performs input/output for NOS. 
The data formats (physical and logical) do not neces­
sarily match the data formats used by CDC C;YBER 
Record Manager. . 

The first, and possibly only. record on an INPUT 
file or a deferred batch job file consisting of statement 
images that s"tart with a job statement and end with 
the first EOR. EOF. or EOI. 

A permanent file that can be attached to the user's 
job. All changes to this file are made on the file 
itself rather than a working copy of the file (refer 
to indirect access file). 

End-of-file is a boundary within a sequential file, 
but not necessarily the end of a file that can be 
referenced by name. The actual end of a named file 
is defined by EOI. On a PRU device, a zero length 
PRU with level designator of 17 indicates EOF. On 
tapes other than SIt I. or X format. EOF is repre­
sented by a tape mark (refer to section 10). 

l ... H-l· 



EOI 

EOR 

EMPTY RECORD 

FET 

FILE 

FILE TYPES 

FIT 

INDIRECT ACCESS FILE 

• 1-H-2 

In CDC CYBER Record Manager. a zero length PRU 
with a level designator of 17 and a tape mark on a tape 
in S or L format is a partition boundary. For W type 
records. the partition boundary is marked by a W 
control word with the end of partition flag set. CDC 
CYBER Record Manager divides files into partitions; 
therefore. an NOS multifile file is a multipartition 
-file when discussing PRU devices. 

End-of - information. 

End-of-record is the terminator of a logical record. 
On a PRU device. a short PRU or a zero length PRU 
with a level designator of 0 indicates EOR. On tapes 
that are not PRU devices. an interrecord gap indi­
cates EOR. Only CDC CYBER Record Manager S 
type terminator is equivalent to the NOS EOR boundary. 

Refer to zero length PRU. 

The file environment table defines the current status 
and properties of a file that is being used by a job. 
CDC CYBER Record Manager uses an FIT to describe 
its files and interfaces to CIO through the FET. 

Set of information that begins at BOland ends at EOI 
and that is referred to by a logical file name. This 
is the only definition of a file in CDC CYBER Record 
Manager and the languages that use CDC CYBER 
Record Manager. In NOS. a file is also defined as 
that portion of a file terminated by EOF; thus. a 
multifile file can exist. Generally. when an NOS 
control statement has a parameter that isa file name. 
that parameter refers to the BOI and EOI definition. 
When an NOS control statement has a parameter that 
specifies the number of files. that parameter uses the 
EOF definition. 

In CDC CYBER Record Manager. one of five file 
organizations. In NOS. file types has several mean­
ings depending upon context (refer to section 2 for a 
description of NOS file types). 

File information table is required by CDC CYBER 
Record Manager for each file to be accessed. Fields 
in the table describe such items as file structure and 
record type. All CDC CYBER Record Manager 
input! output is based on the content of the table. CDC 
CYBER Record Manager provides the interface 
between the FIT and FET. NOS uses the FET for 
input! output to a device. 

A permanent file that is accessed only by making a 
working copy of the file (GET or OLD control state­
ments). It is created or altered by saving or substi­
tuting the contents of an existing working file 
(REPLACE or SA VE control statements) • 

60435400 C 



INTERRECORD GAP 

LEVEL DESIGNATOR 

LINE 

LOCAL FILE 

LOGICAL RECORD 

PARTITION 

PRIl\IARY FILE 

PROCEDURE FILE 

PRU 

PRU DEVICE 

60435400 C 

Physical spaces between data blocks on tape. 

The level designator is an octal number in the termi­
nating marker of a PRU, ranging from 00 to 178. A 
level 17 in an empty PRU designates an EOF in NOS 
and an end of partition in CDC CYBER Record Manag­
er. A level 0 in a short PRU designates an EOR in 
NOS. A level 1 in a short PRU in NOS designates an 
EOR and that the record came from an interactive 
terminal. A level 16 in a short PRU in NOS desig­
nates an EOR on a checkpoint file. 

Refer to zero byte terminator. 

A file that is currently associated with a job. 

A logical record on mass storage is terminated by 
an EOR; on tape, it is terminated by the conditions 
described in section 10 for individual tape formats. 
Often, a logical record contains more than one CDC 
CYBER Record Manager record. Since CDC CYBER 
Record Manager defines a line as a logical record, 
an NOS logical record may contain several record 
manager logical records. 

A CDC CYBER Record Manager file with sequential 
and word addressable organizations. It represents 
a file division that can contain records and sections. 
A file may have one or more partitions. 

The physical representation of a partition on an S or 
L tape is a tape mark. On a PRU device, a file with 
record type other than W has partitions indicated by 
a zero length record with a level designator of 17. 
For W type records, a partition is not equivalent to 
any designator recognized by NOS. 

Any working file created with the OLD, PRIMARY. 
or NEW control statement. 

A file containing control language and control 
statements. 

Physical record unit. The amount of information 
transmitted by a single physical operation of a speci­
fied device. A PRU for mass storage devices is 64 
central memory words in length. A PRU for a binary 
tape in SI, I, or X format is 512 central memory words 
long, and a PRU for a coded tape in SI, I, or X format 
is 128 central memory words long. It may not be full 
of user data (short PRU) or may contain no user data 
(empty or zero length PRU). The physical length of 
the PRU is as previously defined. 

Any mass storage device or tape in SI, I, or X for­
mat, where these records are written in PRUs. 

1-H-3 • 



RANDOl\I FILE 

RECORD 

RECORD SEPARATOR 

RECORD TYPE 

SEQeENCE NCl\IBERS 

SEQCEKTIAL FILE 

SHORT PRe 

,V TYPE RECORD 

• 1-H-4 

A file with an address associated with each record 
such that a particular record in the file can be 
accessed by address. To be accessed randomly. a 
file must reside on mass storage. NOS recognizes 
a file as being random only when the random bit is 
set in the FET. CDC CYBER Record l'vlanager 
recognizes four types of random access files: word 
addressable, indexed sequential, direct access, and 
actual key organizations. All CDC CYBER Record 
l\Ianager organizations are sequential files when 
processed by NOS. 

A unit of information, which is interchangeable with 
logical records in NOS. 

In CDC CYBER Record l\lanager and its language 
processors, a unit of information produced by a 
single write request. In FOR TRAN Extended, a 
formatted write produces zero byte terminated 
records, and an unformatted write produces W type 
records. An operating system record is not the 
same as a CDC CYBER Record l\lanager type record 
unless the CDC CYBER Record l\Ianager record 
type is declared to be S. 

In NOS, another name for an EOR. 

::\Iay have one of several meanings, depending upon its 
conte~. In CDC CYBER Record IVIanager, there are 
seven record types defined by the RT field in the FIT. 

Line numbers at the beginning of each line of a file. 
If a file uses sequence numbers, zero byte terminated 
records are implied. 

A file in which records are accessed in the logical 
order in which they occur. Any file can be accessed 
sequentially. Sequential files must be accessed 
sequentially because no key or address is associated 
with each record in the files. All CDC CYBER Record 
::\Ianager files are considered sequential files by NOS. 

A PR C that does not contain the maximum number of 
character data allowed for that device. 

A CDC CYBER Record l\Ianager record type in which 
user data is preceded by a system-supplied control 
word. FOR TRAN Extended unformatted writes and 
Sort/l\Ierge use ,'\:- type records as default record 
types. EOF and partition boundaries are not equiva­
lent on files with this type of record. 

A file that is currently associated with a job and is 
temporary in nature. That is, all working files 
cease to exist once they are returned to the system 
(either specifically or at job termination) • 

60435400 C 



ZERO BYTE TERM INA TOR 

ZERO LENGTH PRU /RECORD 

6/7/8/9 MULTIPUNCH 

6/7/9 MULTIPUNCH 

7/8/9 MULTIPUNCH 

60435400 C 

The 12 bits of zero in the low order position of a 
central memory word are used to terminate a line of 
coded information to be output to a line printer or to 
represent cards input through a card reader. Files 
with names INPUT and OUTPUT have such termina­
tors while in storage. Any file to be displayed at a 
terminal must also have such terminators for each . 

-line to be displayed correctly. A record with such a 
terminator in CDC CYBER Record Manager is a 
zero-byte record (Z type record). 

The COPYSBF, COPYCR, L072, LIST80, RESEQ, 
ROUTE, and SUBMIT control statements require 
files whose lines are zero-byte records. A record 
(marked by EOR) in NOS may contain one or several 
zero-byte records. 

In display code, two colons create 12 bits of zeros. 
If two consecutive colons occur in a file that contains 
zero-byte records, they may be stored in the lower 
order portion of a word and create a zero-byte 
record. 

Files created at a terminal under AUTO and TEXT 
commands or by using Text Editor contain zero-byte 
terminated records. 

A PRU that contains no user data. If the level desig­
nator is zero, NOS calls it an EOR. CDC CYBER 
Record Manager calls it an EOR only for S type 
records. If the level designator is 17, NOS calls it 
an EOF and CDC CYBER Record Manager calls it 
end-of-partition. For a PHU device, COPYCF, 
COPYSBF, COPYX, and COPYBF copy to this 
boundary. Since a file can be subdivided into files by 
EOFs, the term multifile file arises in NOS. 

Signifies an EOI on a card deck. 

Signifies an EOF on a card deck. 

Signifies an EOR on a card deck. 

I-H-5. 





AB 1-6-9 
~~A directive 1-C-4 
A mode 1-8-3 
Abnormal termination codes 1-B-1 
Abort job 1-5-6; 1-10-3 . 
Absolute binary cards 1-F-3, 4,5 
ACCESS 1-4-3 
Access date 1-8-14 
Access limits 1-6-2 
Access word 1-6-8 
Accessibility, tape 1-G-3,7 
Accessing files 1-2-9 
Accessing direct access files 1-8-:6 
Access mode 1-8-2,6,7 
Accessing tape files 1-10-13 
Accessing unlabeled tapes 1-10-11 
Account block SRU limit 1-6-18,19 
ACCOUNT statement 1-6-2 
Accounting information 1-3-7 
*ADD directive 1-C-4,8 
Address out of range 1-3-13; 1-6-12 
Address registers 1-13-2 
~:~AFTER directive 1-C-4,6 
Aging jobs 1-3-13 
ALGOL statement 1-11-3 
Alternate checkpoint dumps 1-10-1 7 
Alternate system 1-1-2 
Alternate user information 1-8-6,7 
Alternate user number 1-2-7; 1-8-2 
ANSI labels 1-10-1, 9, 16; 1-G-1 
ANSI labels 

End-of -file, end -of-volume 
coincidence 1-G-16, 17, 18 

Multifile, multivolume 1-G-15 
Multifile, single volume 1-G-14 
Single file, multivolume 1-G-13 
Single file, single volume 1-G-13 

Answerback identifier 1-6-9 
APPEND mode 1-8-3 
APPEND statement 1-8-5 
Appending information to a file 1-8-5 
ARE 1-4-2 
ARG= entry point 1-5-3 
Arithmetic error 1-4-2 
Arithmetic operators 1-4-1,2 
ASCII/display code conversion 1-10-2; 

1-A-6,7 
ASCII mode 1-4-12 
ASCII statement 1-4-12 
ASCII terminals 1-F-6 
Assembler languages 1-1-4 

60435400 C 

INDEX 

ASSIGN statement 1-7-2; 1-10-11 
Assigning a file 1-10-11, 13 
Assigning a pack 1-6 -15 
Assigning a tape unit 1-6-15; 1-10-17 
Assigning equipment 1-10-11,14,17 
Assigning nonallocatable devices 1-6-10 
Assigning resources 1-6-15 
ATTACH statement 1-8-6 
Auto eject mode 1-F-5 
Automatic permission 1-8-2 
Auxiliary device requests 1-8-13 
Auxiliary devices 1-2-8; 1-6-9; 1-8-4 
Auxiliary devices, creating files on 1-6-10 
AW 1-6-10 

B format 1-10-27 
~~B directive 1-C-3,4 
Backspacing a file 1-7-3 
Backup system 1-2-8 
BASIC statement 1-11-6 
BASIC subsystem 1-4-3 
Batch jobs, submitting 1-6-21 
Batch origin type 1-3 -7 
BATCH subsystem 1-4-3 
BCD code 1-F-2 
BCO 1-4-2 
BCOT 1-3-7 
*BEFORE directive 1-C-3, 4,7 
Beginning of information 1-2-2 
Binary cards 1-F-3, 4,5 
Binary data 1-9-2 
Binary punch output 1-2 -4 
Binary record management 1-C-1 
Binary records 1-9-4,5; 1-F-1 
BKSP statement 1-7-3 
Blank labeling a tape 1-10-12 
BLANK statement 1-10-12 
Block count 1-G-7, 9,11 
Block, defined 1-10-1 
Blocked data format 1-2-2; 1-10-27 
BOI 1-2-1,2 
Boolean operators 1-4-2 
):<BUILD directive 1-C-4,9 

CALL statement 1-4-5 
Card deck 1-2-2 
Card file structure 1-2-2 
Card format 1-2-2; I-F-2 
Cards, binary 1-F-3, 4,5 

Index-I. 



Cards, coded I-F-2 
Cards, punched I-F-4,5 
Cards, read I-F-2 
Carriage control characters l-A-8; I-F-5 
Carriage return delay 1-6 - 9 
CATALOG statement 1-7-4 
Catalog, user 1-8-2,8 
Category, file 1-8-2, 13 
CATLIST statement 1-8-8 
CB parameter 1-7-2; 1-12-3 
CC 1-6-9 
CCCCCCC 1-10-18 
CCCCCCO 1-12-1· 
CEJ /MEJ option 1-1-1 
Central exhange jump/monitor exchange 

jump 1-1-1 
Central library directory 1-5-6 
Central memory, defined 1-1-1 
Central memory dumps 1-9-1,2; 1-12-1; 

1-13 -1 
Central memory field length 1-5-5 
Central memory resident, defined 1-1-2 
Central memory time slice 1-3-13 
Central processor abort 1-3-14 
Central processor priority, maximum 

1-6-9 
Central processor time 1-3-13; 1-5-5; 

1-6-20 
Central processor time, maximum 

1-6-9,20 
Central processor unit, defined 1-1-1 
CHANGE statement 1-8-10 
Character conversion I-F-4,6 
Character count 1-10-2 
Character set conversion 1-10-2 
Character sets 'I-A-l; I-F-6 
Charge number 1-6-2~10 
CHARGE statement 1-3-7; 1-6-2 
Checkpoint dumps 1-10-13; 1-12-1 
Checkpoint files 1-10-2; 1-12-1 
Checkpoint/restart 1-12-1 
Checksum I-F-3,5 
CIO error messages I-B-1 
CK parameter 1-7-2; 1-12-3 
CKP statement 1-12-1 
CLEAR statement 1-7-7 
CM data error 1-3-14 
CM, defined 1-1-1; 1-6-9 
CM dumps 1-13-1 
CMC input error 1-3-14; 1-6-12 
CM, maximum 1-6-9 
CM time slice 1-3-13 
CMR, defined 1-1-2 
CN 1-6-10 
COBO L statement 1-11-8 
COBOL5 statement 1-11-11 
Code, Hollerith I-F-2 

Display 1-F-2 
Internal BCD I-F-2 

.Index-2 

Coded cards I-F-2,4 
Coded format I-F-4 
Coded records I-F-2 
':~COMMENT directive l-C-4,9 
COMMENT statement 1-6 -3 
':~comment statement 1-6-3 
COMMON statement 1-7-7 

I Communication area I-B-l 
Compare error I-F-4 
COMPASS source deck 1-3-2 
COMPILE file 1-14-2,6 
Compiler languages 1-1-4 
Completion of a job 1-3-15 
Condition codes 1-3 -13, 14 
Configurations, PPU 1-1-3 
Configurations, tape file I-G-12 
Constants 1-4-1 
Continuation lines 1-10-10 
Control language 1-4-1 
Control language functions 1-4-8 
Control language statements 1-4-4 
Control point area 1-3-7 
Control point dayfile 1-3 -16 
Control points, defined 1-1-2 
Control statement format 1-5 -1; 1-11-2; 

1-C-2 
Control statement input buffer 1-5-6 
Control statement processing 1-3-8; 1-5-1 
Control statement processing flow 1-5-6,7 
Control statements 1-5-1 

Checkpoint/restart 1-12-1 
File management 1-7-1 
Job control 1-6-1 
Load / dump central memory utility 

1-9-1 
Loader control 1-5-1 
Permanent file 1-8-1 
Product set 1-11-1 
System utility 1-14-1 
Tape management 1-10-1 

Conver sion, character set 1-10 - 2 
Conversion mode 1-5-6; 1-10-2; I-F-2,3 
Conversion processes I-F-2 
CONVERT statement 1-7-7 
':~COPY directive l-C-4,10 
COpy statement 1-7-8 
COPYBF statement 1-7-9 
COPYBR statement 1-7-10 
COPYCF statement 1-7-10 
COPYCR statement 1-7-11 
COPYEI statement 1-7-12 
COPYSBF statement 1-7-12 
COPYX statement 1-7-13 
Correction line images 1-9-3 
Correspondence code terminals 1-F-6 
CP directive 1-6-9 
CPE 1-4-3 
CPU, defined 1-1-1 
CPU error exit 1-3 -13 

60435400 C 



CPU hardware error exit mode 1-6 -12 
CPU priority 1-6-20 
CPU program error exit mode 1-6-12 
CPU programs 1-1-4 
CPU time 1-6-6 
CPU time limit 1-6-9 
CPUMTR 1-1-2 
Creating 

Direct access file 1-8-11 
Indirect access file 1-8-15, 16 
Labeled tape 1-10-13 
Library file 1-2-5; l-C-l 
Tape files 1-10-1,13 
Unlabeled tape- 1-10-11 

Creation date 1-8-14; 1-10-2; 1-G-6 
Cross reference, system symbols 1-14-10 
CS 1-6-9 
CSET statement 1-4-12 
CT option 1-8-2 
CTIME statement 1-5-6; 1-6-3 
Current time 1-6 -18 

*D directive 1-C-4 
Data channels 1-1-3 
Data conversion mode 1-F-2 
Data format 1-10-3,21 
Data input 1-F-6 
Data output I-F-6 
~:CDATA directive 1-C-4.9 
Dayfile messages 1-B-1 
DAYFILE sta.tement 1-6-3 
DB 1-6-9 
DC 1-7-31 
DDP 1-1-3 
Deadlock 1-6-13 
DEBUG mode 1-6-7 
Debugging aids 1-13-1 
Deck structure 1-3-1 
Deferred batch jobs 1-6-9 
DEFINE statement 1-8-11 
*DELETE directive 1-C -4, 7 
Density. tape 1-10-3 
Device, auxiliary 1-2-8 
Device number 1-8-10, 14 
Device, permanent file 1-2-8 
Device residence 1-2-8 
Device statistics 1-E-1 
Device type 1-4-9; 1-7-2; 1-8-4 
DF 1-6-9 
Diagnostic messages I-B-l 
Direct access files 1-2 -5, 7 

Accessing 1-8-6 
Block sizes 1-2-7; 1-E-1 
Changing parameters 1-8-10 
Defining 1-8-11 
Interlock 1-8-6 
Maximum size in PRUs l-E-1 

60435400 C 

Purging 1-8-14,15 
Space 1-8-4 

Directives 
Escape character 1-6 -21 
MODIFY 1-14-2 
OPLEDIT 1-14-4 
UPDATE 1-14-6 

Disable hardware exit mode 1-6-12 
Disable program exit mode 1-6 -12 
Dismounting packs 1-6-15 
Dismounting tapes 1-6 -15 
Display code I-F-2 
Display code dumps 1-9-2 
DISPLAY statement 1-4-6 
DISPOSE statement 1-7-14 
Disposition of job output 1-6 -21 
Distributive data path 1-1-3 
DMD statement 1-9-2 
DMP statement 1-9-1; 1-13-1 
DMP subroutine 1-13-2 
DOCMENT statement 1-7-15 
DS 1-6-10 
Dump from a terminal 1-9-2 
Dumping central memory 1-9-1,2; 1-13-1 
Dumps 1-13-1 
Duplicate lines in dump 1-9-1; 1-13-1 

E format 1-10-26 
E mode 1-8-3 
EBCDIC/display code conversion 1-10-2; 

l-A-6,7 
EC 1-6 - 10; 1-7 - 32 
EC directive 1-6-24 
ECS 1-1-3 
ECS data storage / retrieval 1-1-2 
ECS files 1-2-2 
ECS flag register operation parity error 

1-3-13; 1-6-12 
EDIT statement 1-14-1 
Editing an OPL-formatted file 1-14-2 
EF 1-4-3 
EIO 1-4-3 
EIOT 1-3 -6.7 
E mode 1-8-3 
EM 1-4-3 
EM-M 1-13-2 
EM-N 1-13-2 
End of file 1-2-1 

B format 1-10-27 
E format 1-10-26 
F format 1-10-28 
I format 1-10-22 
S format 1-10-25 
81 format 1-10-24 
X format 1-10-24 

End of file label I-G-l. 8, 19 

Index-3 • 



End of information 1-2-1 
B format 1-10-27 
E format 1-10-26 
F format 1-10-28 
I format 1-10-22 
S format 1-10-25 
SI format 1-10-24 
X format 1-10-25 

End of line byte 1-F-1 
End of record 1-2-1 

B format 1-10-27 
E format 1-10-26 
F format 1-10-28 
I format 1-10-22 
S format 1-10-25 
SI format 1-10-23 
X format 1-10-24 

End of reel, defined 1-10-29 
B format 1-10-27 
E format 1-10-26 
F format 1-10-28 
I format 1-10-23 
S format 1-10-25 
81 format 1-10-24 
X format 1-10-25 

End-of-tape, defined 1-10-29 
End of tape processing 1-10-29 
End-of-tape reflector I-G-l 
End of volume label I-G-1, 10,19 
Enforce ring 1-10-6 
ENQUIRE statement 1-6-4 
EOF 1-2-1,2 
EOF card 1-2-2; 1-3-1,. 1-F-2 
EOF directive 1-6-22 
EOF1 label 1-G-1,19 
EOI 1-2-1,2 
EOI card 1-2 -2; 1-3 -1; I-F-2 
EOR 1-2-1,2 
EOR card 1-2-2; 1-3-1; 1-F-2 
EOR directive 1-6-22 . 
EOV1 label 1-G-1,10 
EOV2 label 1-G-1 
EOV2-9 labels 1-G-1,19 
Equipment/file assignment 1-10-11 
Error codes I-B-l,34 
Error conditions 1-3-13; 1-6-12,13 
Error control 1-3-13; 1-6-7,12; 1-13-2 
Error exit address 1-3-14 
Error exit mode 1-6-11,12 
Error flag 1-3-14; 1-5-8; 1-6-12 
Error inhibit 1-10-7 
Error messages 1-B-1 
Error processing 1-5-8; 1-6-12 
Error processing bit 1-B-1 
Escape character 1-6 -21 
Evaluation of control language expressions 

1-4-4 
EVIC T statement 1-7 -16 

elndex-4 

Exchange package 1-9-1; 1-13-1 
EXECUTE mode 1-8-3 
EXECUTE subsystem 1-4-3 
Exit mo"de 1-3 -13 
Exit processing 1-5-8; 1-6-7,12 
EXIT statement 1-3-14; 1-5-8; 1-6-7; 

1-13 -2 
Expiration date 1-G-6 
Export/Import origin type 1-3-6,7 
Expressions 1-4-1 
Extended core storage 1-1-2 
External data format 1-2-2; 1-10-24 
External reference 

ALGOL 4 1-11-3 
BASIC 3 1-11-6 
COBOL 1-11-8 
COBOL5 1-11-11 
FTN 1-11-17 
SORTMRG 1-11-23 

F format 1-10-28 
Family 1-2-8 
Family device 1-8-4 
Family name 1-2-8; 1-6-5,27 
FC 1-6-9; 1-7-32 
FET I-B-1 
FET description 1-2 - 9 
FID 1-7-32 
Field length 1-3-8,9; 1-5-5; 1-6-17; 1-13-2 
Field length assignment 1-3-8,9; 1-5-5; 

1-6-17 
Field length control 1-3-8,9 
Field length, user defined 1-6 -.1 7 
File accessibility 1-2 -9; 1-10-3 
File, block sizes 1-E-1 
File category 1-8-2 
File, checkpoint 1-12-1,2 
File, communication area 1-2-9 
File, direct access 1-2 -5; 1-8-6, 11 
~~FILE directive 1-C-4,5 
File environment table 1-B-1 
File function 1-4-8 
File header label 1-G-1, 4, 19 
File identifier 1-10-4; 1-G-5 
File management control statements 1-7-1 
File name, new 1-8-10 
File name table 1-2-3 
File password 1-8-2 
File permission mode 1-8-2, 14 
File, private 1 ~8-2 
File, public 1-8-2 
File, purging 1-8-14, 15 
File, replacing 1-8-15 
File, residency 1-8-11 
File, saving 1-8-16 
File section number 1-10-8; 1-G-2,5 
File sequence number 1-10-8; 1-G-5 

60435400 C 



~ile function 1-4-8 
File status 1-4 - 8 
File status table 1-2-3 
File, structure 1-2-1 
File, types 1-2-3; 1-8-14 
Files 1-2-1 
Files, accessing 1-2-9 
Files, local 1-2-4 
Files, magnetic tape 1-10-1 
Files, maximum number attached 1-6-9 
Files, reading 1-2-9 
Files, writing 1-2 -11 
First file header lab.el 1-G-4 
First end-of-file label I-G-8 
First end-of-volume label 1-G-10 
First word address of memory 1-9-1 
FL 1-4-3 
FLE 1-4-3 
FM 1-7-32 
FNT entry 1-2-2,3 
Force unload 1-10-7 
Foreign data format 1-2-2; 1-10-28 
Formats for cards read I-F-2 
Formats fo;r: cards punched 1-F-4 
Formats for printed data I-F-5 
FORTRAN source deck 1-3-4 
Frame count 1-10-3 
FS 1-6-9 
FST entry 1-2-3 
FTN statement 1-11-1 7 
FTNTS subsystem 1-4-3 
FULL duplex transmission mode 1-6-9 
Functions 1-4-2 

Generation number 1-10-4; I-G-6 
Generation version number 1-10-3; 1-G-6 
GET statement 1-8-12 
gid 1-C-3 
GOTO statement 1-4-4 
Group record identifier 1-C-3 
GTR statement 1-7 -1 7 

HALF duplex transmission mode 1-6-9 
Hardware components 1-1-1 
Hardware error exit mode 1-6-12; 1-13-2 
Hardware instructions 1-1-4 
HDR1 label 1-G-1,4 
HDR2-9 labels 1-G-19 
Header label, defined 1-G-l,4 
Hollerith punch code 1-F-2,3 
Hollerith punch output 1-2-4 

I format 1-2-2; 1-10-22 
':~I directive 1-C-4 
IC 1-7-33 
ID 1-2-6; 1-7-33 

60435400 C 

IF statement 1-4-7 
*IGNORE directive l-C-4,7 
Illegal instruction 1-3 -13 
Increasing the number of scheduled units 

1-6-15 
Increment registers 1-13-2 
Indefinite operand 1-3-13; 1-6-12 
Indirect access files 1-2-7; 1-8-15,16 

Accessing 1-8-6 
Appending information 1-8-5 
Block size 1-2-7; 1-E-1 
Changing parameters 1-8-10 
Creating 1-8-15, 16 
Maximum number 1-6-9 
Maximum size in PRUs 1-6-9; 1-E-l 
Purging 1-8-14 
Replacing 1-8-15 
Saving 1-8-16 

Infinite operand 1-3 -12 
INFT type fil~s 1-2-3 
Inhibit unload 1-10-6 
Initiating a job 1-3-6 
Input, data 1-F-6 
INPUT file 1-3-12 
Input file control 1-3 -12 
Input files 1-2-3 
Input queue 1-3-8, 13 
Input queue priority 1-3-8 
INPUT, writing on 1-3 -12 
~~INSERT directive 1-C-4,6 
Interchangeable families 1-2-8 
Interlock 1-8-6 
Internal BCD code I-F-2 
Internal data format 1-2-2; 1-10-22 
IS 1-6-9 

Job abort 1-5-6; 1-10-6 
Job completion 1-3 -15 
Job control 1-3-8; 1-6-1 
Job control statement 1-3-1; 1-5-4,5 
Job control control statements 1-6 -1 
Job deck 1-3-1 
JOB directive 1-6-21 
Job field length 1-3-8,9; 1-5-5; 1-6-17 
Job files 1-2-3 
Job flow 1-3-1 
Job initiation 1-3-6 
Job name 1-3-6,7; 1-5-5, 1-6-7 
Job name format 1-3-6,7 
Job origin type 1-3-6 
Job output information 1-D-1 
Job priority 1-2-3; 1-3-8 
Job scheduling 1-2-3; 1-3-8 
Job statement format 1-5-4 
Job step 1-3-8,9,12,31; 1-5-5; 1-6-20 
Job structure 1-3-1 
Job subsystem 1-4-3 

Index-5. 



Job termination 1-3-15 
Jobs, submitting 1-6-21 

Keywords 1-5-3 
KRONREF statement 1-14 -1 0 

L format tapes 1-10-25 
Label, defined 1-10-1 
Label identifier 1-G-3, 5, 9,11,20 
Label number 1-G-3, 5, 9, 11,20 

Standard level 1-10-5; 1-G-3 
LABEL statement 1-10-13 
Label types 1-G-1 
Labeled tape 1-10-8, 9, 13 
Labels 1-G-1 
Labels, optional 1-G-19 
Labels, required 1-G-1 
Last word address of memory 1-9-1 
LBC statement 1-9-2 
LDI statement 1-6-7 
Legal user 1-6-2 
LENGTH statement 1-6-8 
LFM error codes 1-B-33 
LGO 1-5-1; 1-12-1 
LIBEDIT 1-C-1 
LIB EDIT directive 1-C -1, 3 
LIBEDIT /LIBGEN examples 1-C-11 
LIBEDIT statement 1-7-18; 1-C-1 
LIBGEN statement 1-7-19 
Library files· 1-2-5; 1-C-1 
Library, program 1-14-6 
Library routines 1-11-1 
Library type files 1-2-5, 14 
Library user 1-11-1 
Libraries 1-2 -12 

System 1-2 -12 
Program 1-2-12 
User 1-2-12; 1-11-1 
User number LIBRARY 1-2-14 

LIFT type files 1-2-5 
LIMITS statement 1-3-7; 1-6-8 
Line image data format 1-10-26 
Line numbers 1-6 -22 
Line spacing 1-F-5 
LISTLB statement 1-10-16 
LIST80 statement 1-7-20 
Literal input 1-F-3 
Literals 1-5-2 
Load map 1-13-3 
Load/dump central memory utility control 

statements 1-9-1 
Loaders 1-5-1 
Loading binary data 1-9-2,4 
Loading octal card images 1-9-3 
Local file control statements 1-5-1 
Local file, retrieve permanent file 1-8-12 

eIndex-6 

Local file, saving 1-8-16 
Local files 1-2-4 
Location of data in core dump 1-13-4 
LaC statement 1-9-3 
LaC K statement 1-7 - 2 1 
LOFT type files 1-2-4 
Logical end of file 1-2-1 
Logical end of information 1-2-1 
Logical end of record 1-2-1 
Logical/ physical file structure 1-2-1 
Logical record 1-2-1; 1-3-1 
Long Block Stranger data format 1-10-25 
L072 statement 1-7 -21 
LP 1-6-9 

M mode 1-8-3 
Magnetic tape 1-10-1 
Magnetic tape file, checkpoint 1-12-1,2 
Magnetic tape file structure 1-2-2 
Magnetic tape files, creating 1-10-1 
Magnetic tape formats 1-2-2; 1-10-21 

Blocked 1-2-2; 1-10-27 
External 1-2-2; 1-10-24 
Foreign 1-2-2; 1-10-28 
Internal 1-2-2; 1-10-22 
Line image 1-2-2; 1-10-26 
System internal 1-2 -2; 1-10-23 
Long blocked stranger tape 1-2-2; 

1-10-25 
Stranger tape 1-2 -2; 1-10-25 

Magnetic tape labels 1-G-1 
Magnetic tape units, maximum 1-6-9 
Magnetic tapes, access restrictions 1-6 -16 
Magnetic tapes, assigning 1-6-15 
Magnetic tapes, maximum 1-6-19 
Magnetic tapes, scheduling 1-6-16 
Magnetic tapes, system management 1-6-15 
Main overlay 1-13-5 
Managing tapes and packs 1-6 -15 
Mass storage device file structure 1-2-2 
Mass storage device statistics 1-E-l 
Mass storage files, size 1-8-4 
Mass storage, maximum 1-6-10 
Maximum field length 1-3-9; 1-5-5 
Maximum number of control points 1-1-2 
Maximum time 1-3-13 
Memory boundaries 1-13-1 
MEMORY macro 1-3-9 
Memory, releasing 1-3-8; 1-6-16 
Memory, requirements 

ALGOL 1-11-3 
BASIC 3 1-11-6 
COBOL 1-11-8 
FTN 1-11-17 
SORTMRG 1-11-23 

MERGE file 1-14-6 
Messages 1-B-l 

60435400, C 



MFL statement 1-6-11 
MFL= entry point 1-3-8 
MNE 1-4-3 
MODE statement 1-3-14; 1-6-11 
Modification date 1-8-14 
Modification decks 1-14-4 
Modification identifiers 1-14-4,5 
MODIFY statement 1-14-2 
Modify directive 1-14-2 
MODIFY mode 1-8-3 
Modify-formatted program library file 

1-14-4 
MODV AL statement 1-6 -11 
MS 1-6-9 
MT 1-6-9 
Multifile reels 1-G-12 
Multifile sets I-G-1 
Multireel files I-G-12 

N mode 1-8-3 
NA option 1-8-5 
*NAME directive l-C-4,5 
ND option 1-8-5 
Nested calls to procedure files 1-4-11 
New file name 1-8-10 
New password 1-6-14 
New permanent file name 1-8-9 
NEW statement 1-7-24 
NEWPL file 1-14-6 
NF 1-6-9 
No abort option 1-8-5 
No drop option 1-8-5 
NOEXIT statement 1-3-14; 1-5-8; 1-6-13 

1-13 -2 
Noise size 1-10-1,5 
Nonallocatable device 1-6-10 
Nonallocatable devices, assigning 1-6 -10 
Nonstandard labels 1-G-l 
NOPACK directive 1-6-22 
~~NOREP directive 1-C-4,9 
NORERUN statement 1-6-13 
NORMAL mode 1-4-12 
NOS labeled tape 1-10-4 
NOS standard character set 1-A-4 
NOS unlabeled tape 1-10-4 
NOS written tape 1-10-1; I-G-7 
NOSEQ directive 1-6-22 
NOTRANS directive 1-6-23 
NPL file 1-14-4 
NULL mode 1-8-3 
NULL subsystem 1-4-3 
NUM function 1-4 - 9 
Number of jobs 1-6-8,21 

60435400 C 

Octal card image format 1-9-3 
Octal card images, loading 1-9-3 
ODE 1-4-3 
OF 1-6-9 
OFA 1-10-5 
OFFSW statement 1-6 -13 
Old password 1-6-14 
OLD statement 1-8 -12 
OLDPL file 1-14-7, 9 
ONEXIT statement 1-5-8; 1-6-13; 1-13-2 
ONSW statement 1-6 -14 
Operand out of range 1-3-13; 1-6-12 
Operand registers 1-13-2 
Operating system format 1-5-1,2,3 
Operators 1-4-1, 2 
OPL file 1-14-2 
OPL record type 1-7-5 
OPLC record type 1-7-5 
OPLD record type 1-7-5 
OPLEDIT statement 1-14-4 
Order-dependent format 1-5-3 
Order-independent format 1-5-3 
Origin type 1-3-6 
Origin type, batch 1-3-7 
Origin type, remote batch 1-3-7 
Origin type, system 1-3-6 
Origin type, time-sharing 1-3-7 
OT 1-4-3 
OUT statement 1-7 -24 
Output, data 1-F-6 
Output file 1-2-4 
OUTPUT file 1-2-4; 1-12-1 
Output information I-D-1 
Overcommitment of resources 1-6-16 
OVL record type 1-7-5 
Owner identification 1-10-6, I-G-3 
Owner of a NOS written tape 1-10-1, 6 
Owner of auxiliary device 1-2-8 
026 mode 1-5-6; 1-F-2 
029 mode 1-5-6; I-G-3 

PA 1-6-9 
PACK directive 1-6-22 
Pack name 1-2-8; 1-8-4,13 
PACK statement 1-7-25 
PACKNAM statement 1-8-13 
Packs, access restrictions 1-6 -16 
Packs, assigning 1-6-15 
Packs, private 1-6 -17 
Packs, public 1-6-17 
Packs, scheduling 1-6-15 
Packs, shareable 1-6-17 
Packs, system management 1-6-15 

Index-7. 



Paper tape reader 1-F-6 
Parameter field 1-5-2 
Parameters, control statement 1-5-3 
Parameters, number of characters 1-5-3 
PARITY statement 1-4-12 
PASSWOR statement 1-6-14 
Password 1-6-27; 1-8-2 
Password, changing 1-6-10 
PBC statement 1-9-4 
PEE 1-4-3 
Peripheral hardware 1-1-4 
Peripheral processor library directory 

1-5-6 
Peripheral processor units 1-1-3 
Permanent file control statements 1-8-1 
Permanent file devices 1-2-8; 1-8-4, l-E-l 
Permanent file information. 1-8-8 
Permanent file name, changing 1-8-10 
Permanent files 1-2 - 5 

Private 1-8-2 
Public 1-8-2 
Semiprivate 1-8-2 

Permanent file size 1-E-l 
Permanent file system 1-8-1 
Permanent file request to auxiliary device 

1-8-13 
Permanent file, used as local file 1-8 -12 
Permanent files, direct access 1-2-7; 

1-8-6 
Permanent files, indirect access 1-2-7 
Permanent files, purging 1-8-14, 15 
Permission, f.ile 1-8-2, 14 
Permission information 1-8-7 
PERMIT statement 1-8-14 
PFM error codes 1-B-34 
PFM error messages I-B-l 
PHFT type files 1-2-4 
Physical file structure 1-2-1 
Physical record unit, magnetic tape 

1-2-2; 1-10-1 
Physical record unit, mass storage 1-2-2 
Physical record units, defined 1-2-1 
PMFT type files 1-2-5 
PN 1-6-10 
PN option 1-8-4 
PP record type 1-7-5 
PPE 1-4-3 
PPU 1-1-3 
PPU record type 1-7-5 
Prefix character 1-5-1 
PRFT type files 1-2-4 
PRI 1-7-33 
PRIMARY statement 1-7 -26 
Primary terminal files 1-2-6 
Print file priority 1-2-4 
Print file s 1-2 -4 
Printed data I-F-5 
Printer queue 1-2-4 

eIndex-8 

Priority, CPU 1-6-5 
Priority, job 1-2-3 
Priority level 1-5-5 
Priority, queue 1-3-8 
Private file 1-8-2, 13 
Private packs 1-2-8; 1-6-17 
Procedure files 1-4-1, 10 
Processing options 1-10-6 
Product set control statements 1-5-1; 

1-11-1 
ALGOL 1-11-3 
BASIC 1-11-6 
COBOL 1-11-8 
CaBO L5 1-11-11 
FTN 1-11-17 
SORTMRG 1-11-23 

Product set format 1-5-1,2,3 
Program address 1-13-2 
Program address register 1-9-1 
Program call statements 1-11-2 
Program error exit mode 1-6-12; 1-13-2 
Program library 1-2-12 
Program library utility control statements 

1-14-1 
Program name field 1-5-2 
Project number 1-6-2, 10 
PRU 1-2-1 

Magnetic tape 1~2-2; 1-10-1 
Mass storage 1-2-2 
Punched statements 1:..2-2 

PRU size 1-2-1; l-E-1 
PSE 1-4-3 
Pseudo-sense switches 1-6-13,26 
PTFT type files 1-2-6 
Public file 1-8-2 
Public packs 1-2-8; 1-6-17 
*PULLMOD directives 1-14-5 
PUNCH 1-2-4 
Punch code I-F-4 
Punch file structure 1-2-2 
Punch files 1-2-4 
PUNCHB 1-2-4; 1-9-4; 1-12-1; I-F-5 
Punched card format I-F-4,5 
PURGALL statement 1-8-14 
PURGE statement 1-8-15 
Purging files 1-8-14,15 
PX 1-6-9 
PW option 1-8-2 
P8 1-2-4; 1-12-1; I-F-5 

Queue files 1-2-3; 1-7-14 
Queue, input 1-3-13 
Queue priority 1-3-8, 13 
Queue, rollout 1-3-13 
Queued file management 1-2-6 
Queues, releasing files 1-7-14 

60435400C 



R mode 1-8-3 
R option 1-8-4 
RA 1-1-2 
RA mode 1-8-3 
RA+1 1-1-2 
Random access 1-2-9 
RBR statement 1-9-4 
READ directive 1-6-23 
READ mode 1-8-3 
READAP mode 1-8-3 
Reading binary records 1-9-4 
Reading CM dumps 1-13-3 
Reading files 1-2-9. 
Reading statements 1-F-2 
READMD mode 1-8-3 
Record 1-2-1 
Record logical 1-2-1 
Record management l-C-l 
Record manager 1-11-1 
Record prefix 1-9-4 
Record type 1-7-5 
Reference address 1-1-2; 1-13-2 
Reference record identifier l-C-3 
Reflector, end-of -tape I-G-l 
Reformatting directive 1-6-22 
REL type record 1-7-5 
Relational operators 1-4-2 
Releasing memory 1-3-8 
Releasing output files 1-3 -15, 16 
Remote batch origin type 1-3 -6, 7 
Removable auxiliary devices, maximum, 

file residency 1-6-9; 1-8-4 
Remove file 1-8-14, 15 
RENAME statement 1-7-26 
~~RENAME directive l-C-4,10 
REP 1-7-33 
REPLACE statement 1-8-15 
*REPLACE directive l-C-4, 10 
Replacing files 1-8-15 
REQUEST statement 1-7-27; 1-10-17 
Required tape labels I-G-1 
RERUN statement 1-6-14 
Rerun status 1-6 -14 

, Rescheduling a job 1-6-18 
RESEQ statement 1-7-29 
Reservation blocks 1-E-l 
Residency, file 1-2-8; 1-8-9, 10 
RESOURC statement 1-6-15 
Resource types 1-6-15 
Resource utilization 1-6-2 
RESTART statement 1-12-2 
Restarting a job 1-12 -1, 2 
Retention cycle 1-10-8 
Retention date 1-10-8 
RETURN statement 1-7-29 
Returning a pack 1-6 -1 7 
Returning a tape file 1-6-17 
REWIND directive 1-6-24 

60435400 C 

*REWIND directive l-C-4,5 
REWIND statement 1-7-30 
Rewrite in place 1-2-11 
RFL= entry point 1-3-8 
RFL statement 1-3-8; 1-6-17 
rid 1-C-3 
RM mode 1-8-3 
RO 1-6-9 
ROFT files 1-2-3 
Rolling out a job 1-3-13 
Rollout control 1-3 -13 
Rollout files 1-2-3; 1-3-13 
Rollout queue 1-3-13 
ROLLOUT statement 1-6-18 
Rollout time period 1-3-13 
ROUTE statement 1-3-6; 1-7-31 

.RP 1-6-9 
R TIME statement 1-5 -6; 1-6 -18 
R ubout characters 1-6-9 
Running field length 1-3-8; 1-5-5 
R1 1-4-3 
R2 1-4-3 
R3 1-4-3 

S format 1-10-25 
S option 1-8-4 
Sample job I-D-l 
SAVE statement 1-8-16 
Saving a file 1-8-16 
SC 1-7-33 
*SC directive 1-5-1 
Scheduling jobs 1-2-3; 1-3-8 
Scheduling packs 1-6 -16 
Scheduling resources 1-6 -15 
Scheduling tape units 1-6-15 
Scheduling units 1-6-15 
Scratch files 1-2-4 
SDM= entry point 1-5-3. 
SECDED network 1-3-14 
Section number I-G-5 
Security control 1-3 -15 
Security count 1-6-27 
Semiprivate files 1-8-2 
Sense switch 1-6-13,26 
Separators 1-5-2 
SEQ directive 1-6-22 
Sequence number 1-G-5 
Sequential access 1-2-9 

. Set identification I-G-5 
Setide~ifier 1-10-8 
SET statement 1-4-6 
SETASL statement 1-6-18 
SETCORE statement 1-6-19 
SETID statement 1-7-34 
SET JSL statement 1-6 -19 
SETPR statement 1-6-20 
SETRFL macro 1-3-9 
SETTL macro 1-3-12 

Index-ge 



SETTL statement 1-3-12; 1-6-20 
Sharable packs 1-6 -17 
SI format 1-10-23 
Single-error correction double-error 

detection network 1-3-14 
SKI PEl statement 1-7-35 
SKIPF statement 1-7-35 
SKIPFB statement 1-7-35 
SKIPR statement 1-7-36 
SL 1-6-10 
SORT statement 1-7-36. 
SOR TMRG statement 1-11-23 
SOURCE file 1-14-2,7 
Space for direct access file 1-8-4 
Special control statements 1-5-6 
Special files 1-2 -4, 
SRE 1-4-3 
SRU 1-3-7 
SRU limit 1-3-12; 1-4-3; 1-6-10, 18 
SS 1-4-3 
ST 1-7-33 
STAGE statement 1-7-38 
Standard labels 1-G-l 
Statement label field 1-5-1 
Status information 1-B-1 
STIME statement 1-5-6; 1-6-20 
Stranger data format 1-10-25' 
Structure of files 1-2-1 
SUBMIT statement 1-3-6,7; 1-6-21 
Submitting jobs 1-3-6; 1-6-21 
Subroutine 1-13-6 
Subsystem .1-4-3 
SUI statement 1-6-25 
SUMMARY statement 1-6-25 
SWITCH statement 1-6-26 
SYFT type files 1-2-6 
symbolic names 1-4-2 
SYO 1-4-3 
SYOT 1-3-6 
System code 1-G-7 
System control statements 1-5-1 
System default library 1-11-2 
System description 1-1-1 
System files 1-2-6 
System internal data format 1-10-23 
System job name 1-3-6 
System library 1-2-12 
SYSTEM macro 1-13-2 
System monitor 1-1-2 
System origin type 1-3 -6 
System origin privileges 1-6.-9 
System priorities 1-3-8 
System resource units 1-3-7 
System sequence number 1-3-6 
System software 1-1-4 
System utility control statements 1-14-1 

eIndex-l0 

Tape file configurations I-G-12 
Tape file structure 1-2-2 
Tape formats 1-2-2 
Tape labels I-G-l 
Tape management 1-10-1 
Tape mark 1-10-1; 1-G-8, 10 
Tape units 

Assigning 1-6 -15 
Dismounting 1-6 -17 
Scheduling 1-6 -15 
System management 1-6 -15 

TAP En 1-9-4,5 
Tapes, access restrictions 1-6-15 
TC 1-6-9 
TDUMP statement 1-7-39 
TEFT file 1-2-3 
Terminal character conversion I-F-6 
Terminal data input 1-F-6 
Terminal parity 1-6-9 
Terminal type 1-6-9 
Termination 1-3 -15 
Terminators 1-5-2 
TEXT record type 1-7-5 

. TID 1-2-6; 1-7-33 
Time limit 1-3-10; 1-6-20 
Time limit control 1-3-10; 1-6-20 
Time limit error 1-5-8 
Time of day 1-6 -18 
Time-sharing character set 1-A-l 
Time-sharing commands 1-4-12 
Time-sharing origin type 1-3-6 
Timed / event rollout file 1-2-3 
TKE 1-4-3 
TL 1-6-9 
TLE 1-4-3 
TRANAC T 1-4-3 
TRANS directive 1-6-22 
Transaction functions 1-6 -1 0 
Translate control statements 1-5-6 
Transmission mode 1-6-9 
Transparent mode 1-6-22,23 
TT 1-6-9 
TTY character conversion I-F-6 
TXO 1-4-3 
TXOT 1-3-6,7 
~'TYPE directive 1-C -4, 5 

UHLa labels I-G-l,20 
ULIB record type 1-7-5 
UN 1-7-33 
UN option 1-8-2 
Unlabeled tape 1-10-13, 
Unload, force 1-10-7 
Unload, inhibit 1-10-6 
UNLOAD statement 1-7-40 



UNLOCK statement 1-7-40 
UPDATE statement 1-14-6 
Update-formatted program library fil~ 

1-14-6 
Update to modify conversion 1 ~ 14-9 
UPMOD statement 1-14-9 
USECPU statement 1-6 ~26 
User catalog 1-8-2, 8 
User header label 1-G-1,20 
User index 1-3 -7; 1-6 - 25 
User labels 1-G-20 
User libraries 1-2-12; 1-11-1 
User number 1-2-7; 1-3-7; 1-6-27 
User number, alternate 1-8-2 
User number library 1-2 -14 
User permission 1-8-3,7 
User programs 1-1-4 
USER statement 1-6-27 
User's control point dayfile 1-6-3,4 
User trailer label 1-G-1,20 
User validation 1-6-27 
User volume label 1-G-1,20 
UTLa labels 1-G-1,20 
UVLa labels 1-G-1,20 

Validation 1-3-7 
Validation information 1-6-8,9, 10 

60435400 C 

VERIFY statement 1-7-41 
VFYLIB statement 1-7-42 
Volume accessibility 1-10-9 
Volume, aefined 1-10-1 
Volume header label 1-G-1,2 
Volume serial number 1-10-1,9 
VOL1 1-G-1,2,3 
VSN 1-G-3 
VSN statement 1-10-18 

W mode 1-8-3 
WBR statement 1-9 - 5 
Working files 1-2-4,6 
WRITE mode. 1-8-3 
WRITEF statement 1-7-42 
WRITER statement 1-7-42 
Writing files 1-2-11 

X format 1-10-24 

6/7/8/9 statement 1-2-2; 1-F-2 
6/7/9 statement 1-2-2; 1-F-2 
7/8/9 statement 1-2-2; 1-F-2 
80-column binary punch output 1-2-4 

Index-11. 





COMMENT SHEET 

MANUAL TITLE __ C_D_C_N_O_S_V_e_r_s_i_o_n_l_R_ef_e_r_e_n_c_e_M_an_u_al----:;;._V_o_l_u_m_e_l ___ _ 

PUBLICATION NO. _________ _ 60435400 REVISION ___ C ___ _ 

·FROM: NAME: _____________________ _ 

BUSINESS ADDRESS: ________________________ _ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

FOLD fOlD 

.-------------------------------------------~ 

BUSINESS· REPlY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WillIE PAID IY , . 

CONTROL DATA CORPORATION 
Publications and Graphics Division 
ARH219 
4201 North Lexington Avenue 
Saint Paul, Minnesota 55112 

I 
fiRST ClASS I 

PERMIT NO. 824, 1 

I 
MINNEAPOlIS. MINN. .1 

Km--------------------------------------KU--I 

1&1 
Z 
::i 
o 
Z 
9 
~ 
~ 
~ 
u 





CORPORATE HEADQUARTERS,P,O, BOX 0, MINNEAPOLIS, MINNESOTA 55440 LITHO IN U.S 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

~~ 
CONT~OL DATA COI\PORf\TION 


